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Abstract

For languages with limited training resources, out-of-

vocabulary (OOV) words are a significant problem, both for

transcription and keyword spotting. This paper investigates the

use of subword lexical units for keyword spotting. Three strate-

gies for using the sub-word units are explored: 1) converting

word-based lattices to subword lattices after decoding, 2) per-

forming a separate decoding for each subword type, and 3) a

single decoding using all possible subword units. In these ex-

periments, the best performance is achieved by carrying out a

separate decoding for each subword type. Further gains are at-

tained through system combination. We also find that ignor-

ing word boundaries improves the detection of OOV keywords

without significantly impacting in-vocabulary keyword detec-

tion. Results are presented on four languages from the IARPA

Babel Program (Haitian Creole, Assamese, Bengali, and Zulu).

Index Terms: keyword search, spoken term detection, OOV,

sub-word lexical units, low resource LVCSR

1. Introduction

Keyword spotting (KWS)—or spoken term detection (STD)—

searches audio for a specific keyword—keywords can also be

sequences of words. The task differs from the traditional

speech-to-text (STT) task in that only a subset of words are im-

portant. For STT, every spoken word is equally important for

the word error rate (WER) metric.

Out-of-vocabulary (OOV) keywords are a significant prob-

lem for KWS. While the OOV rate may be relatively low for a

language, OOV words can represent a disproportionate number

of keywords. Many methods have been previously proposed for

detecting OOV keywords. A typical approach is to convert word

lattices to phone lattices [1, 2]. Keywords are then detected by

searching for a matching phone string. Converting the lattice to

subwords is another alternative [3, 4]. Instead of converting the

word lattice, additional hypotheses can be considered by using

a phonemic confusion matrix [5]. Chen et al. take a similar

approach, but from the keyword perspective [6]. When a key-

word is not in the vocabulary, the search is expanded to include

phonetically similar words in the original vocabulary.

These approaches all attempt to recover OOV words af-

ter decoding has already been performed. The OOV terms

can also be anticipated by decoding with lexical units that are

more likely to detect OOV terms. Previous work has used both

phones as lexical units [7] and character ngrams [8]. Different

types of subword units can also be combined and detected in a

single decoding step [9].

In this work, we focus on the subword-based approach to

KWS. Our goal is to examine three methods for using the sub-

IV Keywords OOV Keywords

Language in Dev not in Dev in Dev not in Dev

Creole 2644 1055 382 615

Assamese 2402 1439 682 530

Bengali 2442 1300 761 550

Zulu 1740 1196 1477 737

Table 1: Distribution of keywords for each of the languages.

Note that a large number of keywords are not found in the de-

velopment data and have no effect on the final results.

word units in the detection process: 1) converting word lattices

to subword lattices, 2) using a separate decoding pass for each

type of subword unit, and 3) combining all subword units to-

gether and performing a single decoding. Since the final method

produces a lattice containing all possible subword units, we also

simulate a subword unit-dependent decoding by only allowing

a subset of subword units when searching for keywords.

Section 2 introduces the IARPA Babel data. Section 3 in-

troduces the keyword spotting system. A detailed description

of the decoding strategies is presented in Section 4. Section

5 presents the results and comparisons, and the concluding re-

marks are in Section 6.

2. IARPA Babel Data

2.1. Data Description

All experiments in this work use data from the IARPA-funded

Babel program. The languages considered are Haitian Cre-

ole (iarpa-babel201b-v0.2b), Assamese (iarpa babel op1 103),

Bengali (iarpa babel op1 102), and Zulu (iarpa-babel206b-

v0.1d). For each language, only the 10-hour subset of tran-

scribed training data (limited language pack condition) is used

for training acoustic and language models. Results are reported

on a separate 10-hour development set.

For the keyword spotting experiments, we use the official

evaluation keywords plus an additional set of development key-

words. Table 1 provides an analysis of the keywords for each

language in terms of whether they occur in the training (IV)

or development data. A keyword can consist of a sequence of

words and is case-insensitive. In the case of multi-word key-

words, if any of the individual words are OOV, then the entire

keyword is considered OOV. If each of the individual words are

seen in training, the keyword is considered IV, even if that exact

sequence of words were not seen.

Zulu is the most challenging of the four languages. In ad-

dition to the complex morphology, it is tonal and has clicks as

part of its phonology. Both Assamese and Bengali share a non-

❈�✁✂✄☎✆✝✞ ✟ ✥✠✡☛ ☞✌❈✍ ✶✎✲✶✏ ✑✒✓✔✒✕✖✒✗ ✘✙✶✎✚ ✑✛✜✢✣✓✤✗✒

■✦✧★✩✪✫★★✬✭ ✮✯✰✱

✷✳✴✵



Roman script—with minor variations. Haitian Creole is similar

to French and has a limited morphology.

2.2. Performance Metric

Maximum term-weighted value (MTWV) and actual term-

weighted value (ATWV) are defined as the measures of inter-

est for IARPA Babel program. ATWV was also used in the

NIST 2006 Spoken Term Detection evaluation [10]. The key-

word specific ATWV for keyword k at a specific threshold t can

be computed by

ATWV(k, t) = 1− PFR(k, t)− βPFA(k, t) (1)

where PFR and PFA refer to the probability of a false reject

(miss) and false accept, respectively. The constant β—set to a

value of 999.9—mediates the trade off between false accepts

and false rejects. MTWV represents the maximum score that

could be obtained by using the optimal value for t over all key-

words. We report results on MTWV in this work, but the dif-

ferences between ATWV and MTWV are small. The range for

MTWV (and ATWV) is between −∞ and 1; incorrect hypothe-

ses are worse than no hypotheses.

In this performance metric, every keyword is equally

weighted regardless of its frequency. Missing a single occur-

rence of a rare word can affect the final score as much as miss-

ing a more common word dozens of times. This explains why

so much effort is devoted to the detection of OOV keywords.

Wegmann et al. have a more detailed discussion of ATWV and

MTWV in relation to the IARPA Babel program [11].

3. Keyword Spotting System

3.1. Acoustic Model Training

The LIMSI STK toolkit [12] was used to train and decode all

systems. All voice activity detection (VAD) was performed by

the BBN VAD system [13]. The BUT stacked bottleneck fea-

tures [14] are also used. More details about the acoustic models

can be seen in [15]. Language models are built using only the

10 hours of transcribed training data. A bigram model is used to

generate the initial lattice, but a 3-gram language model is used

when converting to the consensus network.

In order to remove the necessity of a pronunciation lexicon

and to easily generate pronunciations for subword units, we use

graphemes as our acoustic units. In addition, we use position-

independent acoustic units so that the same acoustic model can

be used for all subword types. The number of graphemes for

each language are: Haitian Creole, 31; Assamese, 49; Bengali,

48; and Zulu, 26. Each system also uses three additional acous-

tic units for non-speech (silence, breath, and filler words).

WER is quite high for the Babel data [16], even using state-

of-the-art ASR systems and techniques. This is not unexpected

as the data consists of conversational telephone speech with lim-

ited training data. When using the acoustic models described in

this paper for transcription, the WER ranges from 51.5% for

Creole to 65.2% for Zulu [15].

3.2. Keyword Spotting

Using a bigram language model, a single pass decoding gener-

ates a lattice. The lattice is rescored with a trigram language

model and converted to a consensus network (CN) [17] prior to

the keyword search. Our preliminary experiments found better

OOV performance using the CN compared to the lattice; the

CN contains sequences of words that do not exist in the original

lattice. Since many of the keywords are actually sequences of

words, we search the CN for any matching sequence of words.

Up to 50ms of silence are permitted between any two words.

In order to detect more OOV keywords, we also ignore word

boundaries when searching for matches. As per the guidelines

of the task, keyword matches are case-insensitive. All exper-

iments follow the no test audio re-use (NTAR) condition; all

audio is processed before the keywords are known [18].

The CN contains a posterior value for each hypothesis. For

multi-word keywords, we use the geometric mean of the indi-

vidual posteriors. Before evaluating the results, we apply the

BBN score normalization procedure [19]. Score normalization

significantly improves results and brings the ATWV results near

the MTWV results.

3.3. Subword Units

We use two main types of subword units. Note that we also ex-

plored using single character graphemes (a common approach

in the literature [1]), but preliminary results on Bengali were

poor, so we did not explore it further. The first type of units are

created by Morfessor [20], a tool for morphological decomposi-

tion. Given a set of words and their frequency, Morfessor learns

a generative model that uniquely decomposes any word into a

sequence of morphological units.

The second type of subword unit is based on charac-

ter ngrams. To generate these units, two properties are first

defined—the maximum length of any subword unit and whether

cross-word subword units are considered. Given those two

properties, a set of all possible subword units are constructed

and used to build a uniform language model. The training cor-

pus is segmented using the uniform language model. As all

words are equally probable, this is equivalent to minimizing the

total number of units in the segmentation. A new trigram lan-

guage model is built from the segmented training corpus, and

the corpus is resegmented. This process is repeated until con-

vergence. Unlike the previous subword type the segmentation

for any word is not necessarily unique; the segmentation de-

pends on the surrounding context.

This work considers character ngrams of length 3, 5, and

7. The word-internal subword units are referred to as 3gram-

wi, 5gram-wi, and 7gram-wi throughout the remainder of the

paper. Cross-word subword units are referred to as 3gram-cw,

5gram-cw, and 7gram-cw. These subword units were also used

in a previous study that demonstrated the efficacy of cross-word

subword units on Turkish data [21].

4. OOV Keyword Detection Approaches

4.1. Lattice Mapping

One approach to OOV keyword detection is to perform recogni-

tion with the standard word units and then map the lattice to sub-

word units. To test this approach, we use both types of subword

units described in Section 3.3. For the subword units based on

character ngrams, we only consider the word-internal versions.

As mentioned previously, the segmentation may not be unique

for each word, so we only use the most likely segmentation. Af-

ter the words in the lattice have been converted to the subword

units, the lattice is converted to a CN. One of the major benefits

of this approach is that many types of units can be examined

with a single decoding of the data. However, there is a compu-

tational drawback. If the subword units are short, the final CN

will contain large numbers of short units. Given a large number
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Language Word Boundary All IV OOV

Creole keep 0.4310 0.4933 0.0000

Creole remove 0.4554 0.4996 0.1518

Assamese keep 0.2667 0.3425 0.0000

Assamese remove 0.2884 0.3496 0.0737

Bengali keep 0.2440 0.3200 0.0000

Bengali remove 0.2741 0.3288 0.1014

Zulu keep 0.1906 0.3523 0.0000

Zulu remove 0.2280 0.3545 0.0806

Table 2: MTWV results comparing the effects of ignoring word

boundaries when detecting keywords. All results use words as

lexical units.

of keywords, particularly if they are long, it can take significant

time to search the CN for the keywords.

4.2. Subword Unit-Dependent Decoding

An alternative approach is perform a separate decoding for each

type of subword unit. After the training corpus has been seg-

mented, a language model is built using the subword units. As-

suming the same training process, a language model based on

subword units obviously contains less context—negatively im-

pacting WER—but it allows for the recognition of words not

seen in training. There are approaches to compensate for this

effect [22], but they are not explored in this work. Based on this

language model, a lattice is decoded and converted to a CN.

The drawback to this approach is the computational cost.

The additional cost is linear in the number of subword

unit types. However, since the acoustic units are position-

independent, increasing the types of subword units does not af-

fect training time.

4.3. Joint Subword Unit Decoding

We can reduce the computational cost of using subword units by

combining all subword unit types into a single system. Given

multiple segmentations of the training transcript—one for each

subword unit type—a single language model is built over all

segmentations. We test two variants of this approach. The first

only includes subword units, while the second also allows the

inclusion of the original word units.

We also attempt to simulate subword unit-dependent decod-

ing with the joint subword systems. Given a set of subword

units, all other units in the CN are removed; the additional prob-

ability mass is distributed among the remaining hypotheses in

proportion to their original confidence score. While this gives

the ability to only consider certain types of units during search,

it is not equivalent to unit-dependent decoding.

5. Results

5.1. Word Boundaries

Before comparing the performance of the subword units and

decoding strategies, we show baseline performance and investi-

gate the effects of word boundaries. Table 2 lists two results per

language. All results use words as lexical units. The difference

is whether word boundaries are considered. When word bound-

aries are ignored, a significant portion of the OOV keywords

are detected—with little effect on IV keywords. The pattern for

subword units is similar, though the gain for OOV keywords is

smaller. Based on these results, the remaining experiments will

Language Lex. Unit Conversion Dependent Simulated

Creole morfessor 0.2076 0.2994 0.2257

Creole 3gram-wi 0.2139 0.3349 0.2813

Creole 3gram-cw 0.3439 0.2763

Creole 5gram-wi 0.2181 0.3361 0.2815

Creole 5gram-cw 0.3484 0.3196

Creole 7gram-wi 0.2223 0.3630 0.3030

Creole 7gram-cw 0.3890 0.3229

Assamese morfessor 0.0765 0.1280 0.0978

Assamese 3gram-wi 0.0899 0.1302 0.0941

Assamese 3gram-cw 0.1430 0.0996

Assamese 5gram-wi 0.0842 0.1648 0.1139

Assamese 5gram-cw 0.1348 0.1143

Assamese 7gram-wi 0.0898 0.1669 0.1169

Assamese 7gram-cw 0.1562 0.1123

Bengali morfessor 0.0918 0.1622 0.1034

Bengali 3gram-wi 0.1184 0.1774 0.1151

Bengali 3gram-cw 0.1433 0.1159

Bengali 5gram-wi 0.1147 0.1819 0.1328

Bengali 5gram-cw 0.1664 0.1329

Bengali 7gram-wi 0.1145 0.1792 0.1328

Bengali 7gram-cw 0.1646 0.1326

Zulu morfessor 0.0845 0.2539 0.2114

Zulu 3gram-wi 0.1026 0.2904 0.1772

Zulu 3gram-cw 0.2736 0.1926

Zulu 5gram-wi 0.0666 0.2817 0.2581

Zulu 5gram-cw 0.2846 0.2669

Zulu 7gram-wi 0.0661 0.2809 0.2652

Zulu 7gram-cw 0.2931 0.2658

Table 3: MTWV results on OOV keywords. Conversion refers

to converting words in the lattice to subword units prior to

searching. Dependent refers to using a separate decoding per

subword unit type. Simulated refers to performing decoding

with all subword units, but limiting the search to a specific type

(see Section 4.3). Note that we do not convert words to cross-

word subword units, so no results exist for those cases.

search for keywords while ignoring word boundaries.

5.2. Lattice Conversion vs. Unit-Dependent Decoding

Table 3 compares the performance of several types of subword

units when converting the lattice or performing unit-dependent

decoding. Due to space constraints, only performance on OOV

keywords are shown. No subword unit gives better performance

than baseline word decoding for IV keywords. As expected,

performing a separate decoding for each type of subword unit

gives significantly better performance—ranging from 50% to

over 100% relative improvement. It is interesting to note the

subword-based units do not perform as well for Assamese and

Bengali, possibly due to their larger character and grapheme set.

In all cases, the worst performing subword type is the

Morfessor-based subword type, but this is misleading. The

Morfessor-based units consistently give the best IV keyword

performance—though still not as good as the baseline word

system—and can give the best overall performance depending

on the ratio of IV to OOV keywords. When comparing the char-

acter ngram-based subword unit results across languages, there

does not appear to be a pattern. The worst system for Creole

(3gram-wi) performs well for both Bengali and Zulu.

In a previous study on Turkish [21], we noted that cross-

word subword units did not outperform word-internal units, but
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Language Lex. Unit All IV OOV

Creole joint 0.4625 0.4788 0.3556

Creole joint+word 0.4561 0.4728 0.3440

Assamese joint 0.2868 0.3297 0.1424

Assamese joint+word 0.2862 0.3310 0.1415

Bengali joint 0.2668 0.3000 0.1652

Bengali joint+word 0.2668 0.2983 0.1657

Zulu joint 0.3041 0.3256 0.2844

Zulu joint+word 0.3049 0.3350 0.2795

Table 4: MTWV results for the joint decoding systems. Joint

refers to a system that decodes using all possible subword units.

Joint+word also includes the original words.

Language Decode Type All IV OOV

Creole Conversion 0.4173 0.4507 0.2498

Creole Dependent 0.4664 0.4734 0.4319

Creole Simulated 0.4368 0.4590 0.3135

Assamese Conversion 0.2670 0.3154 0.1003

Assamese Dependent 0.2907 0.3228 0.1859

Assamese Simulated 0.2762 0.3212 0.1276

Bengali Conversion 0.2601 0.3012 0.1288

Bengali Dependent 0.2858 0.3015 0.2370

Bengali Simulated 0.2613 0.2969 0.1489

Zulu Conversion 0.1862 0.2802 0.0878

Zulu Dependent 0.3132 0.3110 0.3221

Zulu Simulated 0.2420 0.2598 0.2301

Table 5: MTWV results for the combined results from Table 3.

did combine well. For these results, the cross-word units out-

perform their word-internal counterparts in several instances;

7gram-cw gives the best result for both Creole and Zulu. It may

be that cross-word units work best with longer subword units.

5.3. Joint Subword Unit Decoding

Table 4 shows the performance of using a single decoding for

all possible subword units. Results are presented both with and

without the inclusion the original words. The inclusion of the

original words has little effect on the final performance—the

combination of all the subword units actually cover a significant

portion of the original words anyway. As a stand alone system,

the joint decoding is several points worse than the best subword

unit-dependent system on OOV, and several points worse than

the word-based system on IV. However, depending on the bal-

ance of IV to OOV, it can offer the best combined performance.

Since the Zulu keyword list contains so many OOV keywords,

the joint Zulu result gives a 34% relative increase in MTWV.

In Section 4.3 we also discussed simulating the unit-

dependent systems with a single joint system. Table 3 contains

the results. In all cases, this approach of simulating the unit-

dependent decoding is significantly worse than actually per-

forming the unit-dependent decoding. However, it is signif-

icantly better than converting the original word lattice to the

equivalent subword unit. This approach could offer a way to

quickly generate large numbers of additional hypotheses de-

pending on the subword units considered.

5.4. Combination Results

We use a simple procedure for combining results—overlapping

hypotheses are averaged. More sophisticated combination

methods could produce better results, but this provides a guide

to the complementarity of the results. Table 5 contains the re-

sults for combining the results for each decoding strategy dis-

cussed in Section 4.

The lattice conversion results are at a slight disadvantage

because the combination does not include the cross-word sub-

word units, but it is clearly the worst performing approach. The

simulated results offer better performance than the lattice con-

version, but fail to obtain the performance of the joint system

used to generate them. The best performance is from combin-

ing the subword unit-dependent results.

6. Conclusion

A major difficulty in the KWS task is the detection of OOV

keywords. Subword-based lexical units are one potential solu-

tion. We have investigated three approaches to incorporating

subword units into the decoding process. The simplest, con-

verting a word lattice to subword units, also performs the worst.

While it can detect some OOV keywords, the sequences of sub-

word units that can form OOV words do not appear often.

The second approach, subword unit-dependent decoding,

provides the best OOV performance, especially when combin-

ing multiple results. However, it does come at a higher compu-

tational cost since multiple decoding passes are required. Also,

it is not clear if determining which subword unit types will per-

form best prior to decoding is possible.

The final approach, joint subword decoding, has worse IV

performance than the baseline and worse OOV performance

than the best subword unit-dependent result. However, depend-

ing on the percentage of OOV keywords, it can produce the

best overall result. If a single system is required, it is a good

candidate. We also explored the idea of simulating the unit-

dependent systems using the joint results. The simulated per-

formance is not as good, but provides a method for creating a

large set of results that can later be combined.

We find the different subword unit results contain comple-

mentary information. Even using a simple combination ap-

proach, large gains in MTWV are seen. We plan to explore

more sophisticated combination methods to improve results

even further. The Bengali and Assamese gains were not as

large as with Creole and Zulu. In future work we will inves-

tigate whether this is due to a specific characteristic of these

languages, and whether an improvement to the subword unit-

based methods can compensate for it.
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