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Abstract
This paper describes Vocapia-TalTech team systems developed
for the 2022 NIST Language Recognition Evaluation (LRE22)
which focused on spoken language identication of African lan-
guages, including low-resource languages. In both fixed and
open conditions, our primary systems were fused from multiple
individual systems using logistic regression. In the fixed con-
dition, we largely relied on wav2vec2.0 conformer models pre-
trained on the provided training data. In the open condition, we
used external pretrained wav2vec2.0 models, phonotactic mod-
els and features derived from a multilingual speech recognition
system, and also augmented the provided target language devel-
opment data with additional data scraped from the web. On the
LRE22 evaluation data, our final fixed and open condition sys-
tems obtained excellent results, with primary metric Cact val-
ues of 0.111 and 0.067, respectively. A post-evaluation study
shows that both pretrained models as well as additional data are
important for accurate models.
Index Terms: spoken language recognition, NIST LRE22,
wav2vec2.0

1. Introduction
The identification of spoken language (LID) involves recogniz-
ing the language spoken in an audio segment. In recent years,
utilizing pre-trained models based on self-supervised or speech
recognition objective functions has emerged as a state-of-the-art
approach for LID, as evidenced by prior research [1, 2].

The 2022 NIST Language Recognition Evaluation (LRE22)
[3] focused on LID for 14 African languages and dialects. The
task can be considered low-resource, as speech from only 30
speakers for each target language was available for system de-
velopment. Thus, LRE22 provided a good opportunity to exper-
iment with various pre-trained models. This paper presents sys-
tems developed for LRE22 by the Vocapia-TalTech team, along
with a description of the additional training data we collected
from the web and its impact on system performance.

2. NIST LRE22
LRE22 was the ninth evaluation in a series that began in 1996.
The evaluation aims to advance LID technology, facilitate its
development and measure its performance. LRE22 focuses
on conversational telephone speech and broadcast narrow band
speech data in the context of low-resource training data, with an
emphasis on African languages. The task for LRE22 is closed-
set language detection: given a segment of speech and a tar-
get language, automatically determine if the target language
was spoken in the test segment. LRE22 has 14 target lan-
guages: Afrikaans, Tunisian Arabic, Algerian Arabic, Libyan

Arabic, South African English, Indian-accented South African
English, North African French, Ndebele, Oromo, Tigrinya,
Tsonga, Venda, Xhosa and Zulu.

In the fixed condition, participants are allowed to use the
following speech datasets for system training and development:
• NIST LRE 2017 Development Set, previous NIST LRE

training data (LDC2022E16), NIST LRE 2017 Test Set
(LDC2022E17), containing 1872 h of conversational tele-
phone speech from 14 languages/dialects;

• NIST LRE 2022 Development Set (LDC2022E14), contain-
ing 26 h of telephone speech from 14 target languages;

• VoxLingua107 [4], containing 6628 h of Youtube speech
from 107 languages.

Only the LRE22 development set contains speech data for
all 14 target languages, with 300 segments per language, col-
lected from 30 unique speakers per language. LRE17 datasets
also contain mostly conversational telephone speech, but for a
different set of languages and dialects. In the open training con-
dition, participants can use any additional data including pro-
prietary data.

The primary metric for LRE22 is an application-motivated
cost function Cact that combines the probability of missed de-
tection and false alarms, given log-likelihood scores assigned
to each language by the system [5]. Since LRE22 considers
closed-set language classification, we also provide simple clas-
sification error rates in addition to the official metric scores.

3. Fixed condition
3.1. Voice activity detection

We used Kaldi’s [6] energy-based voice activity detection for
processing both training as well as test data. Frame-based voice
activity decisions were used as input to a process that creates
longer speech chunks by finding contiguous sequences of voice
frames and then merging them using a criterion that observes
the proportion of voiceless frames in a chunk. Resulting long
training data speech segments were split into 10-second seg-
ments, with an overlap of 2 seconds.

3.2. Frontends

3.2.1. Resnet-style model

The Resnet-style model is derived from the x-vector
paradigm [7, 8], with several enhancements. During training,
we apply on-the fly data augmentation, by randomly distort-
ing the training data using reverberation and noise augmenta-
tion. We used the background noises in the Freesound portion
of the MUSAN corpus [9] and simulated small, medium and
large room impulse responses [10] for data augmentation.
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Figure 1: Wav2vec2.0-based model with block-softmax output
layers.

For frame-level feature extraction, we use the Resnet34
[11, 12] architecture where the basic convolutional blocks with
residual connections are replaced with squeeze-and-excitation
modules [13, 14]. The statistics pooling layer that maps frame-
level features to segment level features is replaced in our model
with a multi-head attention pooling layer [15]: 512-dimensional
frame level representations are first mapped to 128 outputs, us-
ing a 1 × 1 convolution and a ReLU nonlinearity; from this
representation, each attention head (we used 5 heads) computes
it’s own softmax-based weight distribution over the input utter-
ance; finally, weighted mean and standard deviation are com-
puted over the frame level features for each head, resulting in
5× 512× 2 segment-level representations.

The Resnet model was trained on the full VoxLingua107
training set, resampled to 8 kHz. 30-dimensional filterbank fea-
tures were used as input.

3.2.2. Wav2vec2.0-based frontends

Since using external pretrained models is not allowed in the
fixed track, we trained our own wav2vec2.0 [16] models on the
provided training data. We used the “conformer-base” architec-
ture to train two models: one on the LRE17 training and devel-
opment data, an the other on the union of LRE17 and VoxLin-
gua107. The VoxLingua107 data was band-filtered to simulate
8 kHz data.

The wav2vec2.0 models were then finetuned for LID as fol-
lows: the outputs from the wav2vec2.0 “backbone” were fed
through an attentive pooling layer, a fully connected layer with
ReLU and BatchNorm, and the final output layer, corresponding
to the languages of the training set. During training, the learn-
ing rate corresponding to the backbone was set to 1% of the base
learning rate. We experimented with two finetuning scenarios:
(1) using VoxLingua107, (2) using both LRE17 and VoxLin-
gua107, using block-softmax. In the block-softmax model, dif-
ferent output layers are created for different training datasets
(see Figure 1). This is different from the usual approach where
all languages from all training datasets are pooled together dur-
ing training. This approach has been used in training multilin-
gual bottleneck extractors [17] and speaker recognition models

[18]. It is motivated by the fact that the language data in the two
training datasets (VoxLingua107, LRE17) is quite different. By
separating them into different softmax blocks, we encourage the
model to learn dataset independent features in the shared layers
(including the embedding layer) and place the dataset-specific
discrimination capability into the final branched layers. Also,
this eliminates the problem of how to model dialects/languages
that have a different granularity in different training datasets –
e.g., different English and Arabic dialect/accents are individual
target languages in LRE17 but not in VoxLingua107.

The same on-the-fly data augmentation strategy as was used
in training the Resnet-style model was also used in finetuning
wav2vec2.0 based models.

3.2.3. X-vector model, using wav2vec2.0 features

The x-vector model [7] consists of a feed-forward DNN that
maps sequences of variable-length speech features to fixed-
dimensional embeddings. In language recognition, multilingual
bottleneck features have been found to perform well as input
features to an x-vector model [8]. In the closed condition, in-
stead of using phonetic bottleneck features, we extracted repre-
sentations from the last layer of the frozen wav2vec2.0 mod-
els described in the previous section. The dimension of the
extracted wav2vec2.0 features is 768. The original TDNN x-
vector architecture [7] was used. The x-vector dimension (for
the backend) is 128.

3.3. Backend

Most of the individual systems used a backend that consists of
LDA (dimensionality of 13), mean subtraction, length normal-
ization, and logistic regression. It is trained on noise, music and
reverberation augmented LRE22 development data, after voice-
activity detection and chunking, as described in Section 3.1.

The backend for x-vector systems computes the log poste-
rior probabilities for each target language directly with a LDA
trained on mean and variance-normalized x-vectors.

4. Open condition
4.1. Additional datasets

In the open track, participants were allowed to use additional
data for system training and development. We collected two
web-scraped datasets containing target language data (Table 1).

The first dataset ExtraA was collected in a rapid man-
ner. For most target languages, we found radio stations that
mostly broadcast in the specific language that also provide links
to episodes of specific radio programs via RSS or YouTube.
We tried to find specific radio programs under each station
that have a high presence of conversational speech and a large
variety of speakers. We didn’t attempt to verify that the
individual downloaded episodes contain the target language.
For two languages/dialects (Algerian and Libyan Arabic), we
simply reused data from the ADI17 corpus [19] which con-
tains data originating from Youtube. The retrieved data was
segmented into single-speaker speech segments using pyan-
note.audio [20, 21] and further subsegmented into consecutive
10-second segments. We finally reduced the dataset to 30k seg-
ments per language. This approximates to around 50 hours per
language, with the exception of South African English and Nde-
bele, for which we had less data downloaded.

When collecting the second dataset ExtraB , we put more
emphasis on collecting conversational telephone speech and ex-
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Table 1: Additional web-scraped datasets used in the open condition (before speech detection)

Rapidly collected dataset ExtraA Carefully collected dataset ExtraB
Language Sources Hours Sources Hours

Afrikaans RSG (radio), Klipkouers (Podcast) 165 RSG (radio), SABC (TV) 61
Tunisian Arabic Watania (TV) 280 Mosaique FM, Diwan FM 48
Algerian Arabic ADI17 (Youtube) 51 Darba Jil FM, JowRadio Algerie 29
Libyan Arabic ADI17 (Youtube) 80 Waad FM, Libya Mostakbal (radio) 20
South-African (SA) English SaFM (radio) 21 Sa FM, Man Torg, Radio 702 (radio) 62
Indian-accented SA English Lotus FM (radio) 29 IndiaToday (radio), NewsOnAir (radio) 57
North African French Radio Algerienne FM (radio) 47 France Maghreb (radio), Radio M 61
Ndebele Indaba zesiNdebele (radio program) 25 IKwekwezi FM , SABC (TV) 60
Oromo United Oromia (Youtube) 67 Oromo News (TV), VOA Oromo (TV) 50
Tigrinya Tigrai TV (TV station) 129 Radio Erena 50
Tsonga Munghana Lonene FM (radio) 75 Munghana Lonene FM, SABC (TV) 48
Venda Phalaphala FM (radio) 52 Phalaphala FM, SABC (TV) 48
Xhosa Umhlobo Wenene FM (radio) 52 Umhlobo Wenene FM , SABC (TV) 59
Zulu Ukhozi FM (radio) 234 Ukhozi FM, SABC, IARPA Babel (LDC2017S19) 60

cluding non-target language data. Additional web sources were
identified for this collection. Collected data was automatically
processed through SAD, segmentation and filtered to exclude
other languages according to the following procedure:

1. Using a multi-domain SAD system to detect speech seg-
ments from each source corresponding to telephone speech
(additional broadcast speech segments are added in case not
enough telephone speech are found in the original data).

2. Filtering out segments belonging to foreign languages
(mainly English and French segments for African languages
and Arabic dialects). This was done using intermediate
phonotactic and/or x-vector models. The accented English is
the only exception to this filtering process where all segments
detected as English from South African and Indian sources
(using our internal LID system) are simply kept without any
further analysis.

3. Building a model based on a subset of segments correspond-
ing to each language and removing segments belonging to
each class with a low confidence measure. A cross-validation
procedure is used in this step to avoid any source of bias.

4. Manually checking the remaining segments and keeping a
subset of 300 segments per language (or dialect) with speech
duration between 3 and 30 seconds. It’s important to mention
that the filtering of Arabic segments should be done carefully
to remove any segments that have too much MSA or code-
switching (mainly French) and only keep good-quality seg-
ments to be used in the final LID system.

On the average, 30-40 hours per language or dialect were
selected from telephone (narrowband) speech and 20 hours
from broadcast (wideband) speech. For Zulu, we also included
the corresponding IARPA Babel Language Pack.

4.2. Wav2vec2.0 based subsystems

In the open condition, our submission used two publicly avail-
able wav2vec2.0 models pretrained on around 500 000 hours of
unlabelled data: XLS-R-1b and XLS-R-2b [22]. The models
were finetuned for LID with block-softmax over three datasets
(VoxLingua107, LRE17, and ExtraA) and then optionally fur-
ther finetuned on the ExtraB dataset.

The backend is similar as was used in the fixed condition,
except that it is trained on the union of data-augmented and
chunked LRE22 development data and the new dataset ExtraB .

4.3. X-vector model, using ASR bottleneck features

For open condition, at input of the x-vector models, we used
the representations extracted from the pre-final layer of a mul-
tilingual ASR TDNN-F model. However, instead of the DNN
bottleneck model, we used a conventional phonetic TDNN-F
model [23] without any specific bottleneck layer. The ASR
TDNN-F model was trained on 950 hours of conversational
telephone speech data, including BABEL, Appen, and Lin-
guistic Data Consortium (LDC) data, covering 17 languages.
A common phoneset comprising 68 phones and 3 non-speech
units was used.

A TDNN x-vector model with about 18M parameters was
trained on the ExtraB corpus using 192-dimensional bottleneck
features, extracted from the pre-final TDNN layer of the ASR
model. The x-vector dimension is set to 128.

4.4. Phonotactic models

Phonotactic systems rely on the assumption that the phonotactic
characteristics, that is the way phonemes make up words and
sentences, differ across languages [24, 25].

The first phonotactic system used in our experiments makes
use of the Parallel Phone Recognizer followed by Language
Modeling (PPRLM) approach [25]. Pre-trained phone decoders
using TDNN-F acoustic models for three languages (English,
French and Arabic) were used to decode all of the ExtraB data.
Phone n-gram statistics were then estimated from the resulting
phone lattices and used to compute the expectation of the phone
log-likelihood for each target language [26]. The PPRLM sys-
tem merges some dialects and languages into single targets and
thus its results are not directly comparable to other systems. It
was primarily designed for fusion with acoustic models.

An alternative phonotactic model relies on a pretrained
multilingual phone recognizer [27]1, trained on the phoneme
transcripts of 21 Mozilla CommonVoice datasets and 19 BA-
BEL corpora. It uses a XLSR-53 wav2vec2.0 model [28] as
initialization. For training the phonotactic system, we used
the multilingual phone recognizer to transcribe LRE22 devel-
opment set and the web-scraped training dataset ExtraB . Based
on the resulting transcriptions, we trained a multinomial Naive
Bayes model that uses all phoneme bigrams, trigrams and 4-
grams that occur in training data as features.

1Available at https://huggingface.co/facebook/
wav2vec2-xlsr-53-phon-cv-babel-ft
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Table 2: Results of individual systems and their fusion on LRE22 evaluation set.

Dev Eval
ID Frontend Backend Cact Cact Err%

Fi
xe

d
co

nd
iti

on F1 Resnet, trained on VoxLingua107 LDA+LR 0.220 0.203 19.7
F2 Conformer w2v, pretrained on LRE17, finetuned on VoxLingua107 LDA+LR 0.153 0.135 15.0
F3 Conformer w2v, pretrained on LRE17+VoxLingua107, finetuned on VoxLingua107 LDA+LR 0.166 0.151 15.0
F4 Like above, but finetuned on LRE17+VoxLingua107 LDA+LR 0.168 0.139 13.9
F5 Conformer w2v, pretrained on LRE17+VoxLingua107 → TDNN x-vector LDA post. 0.187 0.173 17.9
FP Fusion 0.136 0.111 11.5

O
pe

n
co

nd
iti

on O1 XLS-R-1B, finetuned on VoxLingua107+LRE17+ExtraA + more ft. on ExtraB LDA+LR 0.082 0.067 6.3
O2 XLS-R-2B, finetuned on VoxLingua107+LRE17+ExtraA LDA+LR 0.090 0.075 7.7
O3 Multilingual phonetic TDNN-F features + TDNN x-vector LDA post. 0.149 0.134 12.5
O4 Lattice-based PPRLM phonotactic system 0.327 0.320 34.8
O5 Multilingual phone recognizer based phonotactic system 0.350 0.368 29.9
OS Fusion 0.075 0.067 6.3
OP Fusion, with duration-based features 0.074 0.067 6.4

Table 3: Impact of pretrained models and extra data.

XLS-R Finetuning data (in addition to
VoxLingua107 and LRE17)

Backend training
data

Eval
Cact

300M - LRE22 0.109
1B - LRE22 0.107
1B - LRE22, ExtraA 0.101
1B - LRE22, ExtraB 0.096
1B ExtraA LRE22, ExtraA 0.069
1B ExtraA LRE22, ExtraB 0.071
1B ExtraA, more ft. with ExtraB LRE22, ExtraB 0.067

5. Results and analysis
The results of our systems and their fusion are listed in Table 2.
Results on the development set are computed using 5-fold cross-
validation. Both primary metric Cact and error rate scores are
provided for the evaluation set.

Individual system scores were fused and calibrated using
a logistic regression model trained on development data. The
calibration model learns a scale and bias for each model and
uses binary reference values as target values.

In the open condition, we experimented with duration-
sensitive fusion. Each model’s scores are fed to the calibration
model twice: (1) as is, and (2) scaled by the log duration of
the trial audio. This accounts for the idea that different mod-
els may have duration-specific importance. Duration-sensitive
fusion improved results on development data but not on evalua-
tion data. Bold scores from the fusion models were used as our
primary LRE22 submissions.

Figure 2 shows the Cact scores of top-ranked teams in both
conditions, with team names anonymized (copied from [3]).
LRE22 rules prevent us from pinpointing our results in the rank-
ing, but readers can compare the results in the figure to the eval-
uation set Cact scores shown in Table 2.

The results indicate that wav2vec2 models fine-tuned for
LID outperformed other approaches. Although the conformer-
based wav2vec2.0 model pre-trained on the provided training
data outperformed all other models under fixed conditions, re-
placing it with the pre-trained XLS-R-1b model and using more
target language data for fine-tuning led to a significant im-
provement of about 50% from F2 to O1. An analysis of fine-
tuning XLS-R wav2vec2.0 models using varying amounts of
web-scraped extra data is presented in Table 3. The first line
corresponds to the XLS-R-300M model fine-tuned for language

Figure 2: LRE22 performance comparison of fixed and open
training conditions, with anonymized team names [3]. Dashed
lines correspond to the official baseline.

recognition using VoxLingua107 and LRE17 data, with a back-
end classifier trained exclusively on LRE22 development data.
Results show that using the larger 1B parameter model only
marginally improved accuracy compared to the 300M model.
Additionally, including extra web-scraped data for training the
backend had a relatively small impact. However, utilizing the
extra data to fine-tune a new frontend model resulted in an im-
provement of approximately 30%. The results also indicate that
while the carefully curated web-scraped dataset ExtraB gener-
ally yields better results than the rapidly collected ExtraA, the
difference is relatively minor. This suggests that rapidly collect-
ing somewhat weakly-labelled data is adequate for most practi-
cal purposes.

6. Conclusion
This paper outlined Vocapia-TalTech team systems developed
for the NIST LRE22. Leveraging pretrained models based on
wav2vec2.0 proved to be crucial for achieving very strong re-
sults in both fixed and open conditions. Specifically, in the fixed
condition, we employed conformer-based wav2vec2.0 models
pretrained on the provided speech data. In the open condi-
tion, we obtained a 30% performance improvement by utiliz-
ing publicly available XLS-R models. Moreover, we fine-tuned
wav2vec2.0 models using target language data rapidly scraped
from the web, which led to an additional 30% boost in results.
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