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Léa-Marie Lam-Yee-Mui1,2, Lucas Ondel Yang1, Ondřej Klejch3
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Abstract
This paper investigates the potential of improving a hybrid
automatic speech recognition model trained on 10 hours of
transcribed data with 200 hours of untranscribed data in low-
resource languages. First, we compare baseline methods of
cross-lingual transfer with MFCC features and features ex-
tracted with the multilingual self-supervised model XLSR-53.
Subsequently, we compare two approaches that can leverage
the untranscribed data: semi-supervised training with LF-MMI
and continued self-supervised pre-training of XLSR-53. Our
results on well-resourced English broadcast data derived from
MGB show that both methods achieve 18% and 27% relative
improvements compared to the baseline, respectively. On the
low-resource South African Soap Opera dataset, the relative
improvement with semi-supervised training is only 3% due to
the inherently weak language model. However, continued pre-
training achieves 8.6% relative improvement because it does not
rely on any external information.
Index Terms: Low-resource automatic speech recognition,
self-supervised training, semi-supervised training

1. Introduction
Automatic speech recognition (ASR) systems have recently
demonstrated great accuracy improvements in well-resourced
languages [1, 2, 3]. This accuracy has been achieved thanks
to the modelling improvements and hundreds of thousands of
hours of transcribed speech. However, ASR performance in
low-resource languages is still lacking due to limited amounts
of transcribed speech for training of acoustic models and lim-
ited amounts of text for the training of language models. This
lack of training data in low-resource languages is even further
exacerbated by code-switching between embedded and matrix
languages [4]. In this work, we study how self-supervised train-
ing [1, 2, 5] and semi-supervised training [6, 7] can be used to
leverage untranscribed audio data to improve the performance
of ASR models for underrepresented languages. Consequently,
we address the case where only small amounts of manually tran-
scribed speech with an inherently weak language models are
available, due to code-switching and the lack of text corpora.

In this paper, we use the South African Soap Opera
dataset [8] which contains 14.3 hours of code-switched speech
between four Bantu languages (Sesotho, Setswana, isiXhosa,
and isiZulu) and English. Building a good language model
for this domain is difficult due to code-switching, variation
in orthography and lack of text data on the internet. To im-
prove the ASR performance in these languages, previous works
explored transfer learning with a multilingual model [9] and
semi-supervised training with a weak language model [10, 11].
Following these works, we focus on building a five-lingual

model for the South African languages and on taking advan-
tage of 200 hours of untranscribed data for self-supervised and
semi-supervised training. We also run contrast experiments on
British English broadcast data from the Multi-Genre Broadcast
(MGB) Challenge [12], for which we can train a strong lan-
guage model using the provided historical BBC subtitles. We
artificially mimic low-resource settings by sampling 10 hours
of transcribed data and another 200 hours as untranscribed data
from the MGB dataset. In our experiments on the South African
Soap Opera dataset and the English MGB dataset, we show that:
• when training the seed five-lingual South African acoustic

model, cross-lingual transfer from a matching domain in a
well-resource language (MGB) works better than transfer
from a mismatched domain in the same languages (NCHLT).

• cross-lingual transfer is comparable with using multilingual
self-supervised features extracted from XLSR-53.

• both semi-supervised training and continued self-supervised
pre-training work in well-resourced settings.

• continued self-supervised pre-training works better than
semi-supervised training with an inherently weak language
model for code-switched speech in South African languages.

• continued self-supervised pre-training and semi-supervised
training are complementary even in low-resource languages.

2. Related work
In this section, we review some common methods in speech
recognition for low-resource languages: cross-lingual transfer,
self-supervised pre-training and semi-supervised training.

2.1. Cross-Lingual transfer

In cross-lingual transfer, we first train an acoustic model for a
set of well-resourced languages and then transfer the parame-
ters of the acoustic model to the new low-resource language.
Then, we train the final acoustic model by fine-tuning a sub-
set of the parameters on a small amount of available transcribed
data [13, 14]. These multilingual models can also be used to ex-
tract bottleneck features which are used to train another model
with data from a low-resource language[15].

2.2. Self-Supervised Training

In self-supervised learning (SSL), the acoustic model param-
eters are pre-trained on thousands of hours of untranscribed
data. The model learns to recognize latent speech represen-
tations from raw signal with a contrastive loss, such as In-
foNCE [16]. Architectures based on convolutional layers and
Transformers [17] have been proposed and pre-trained with En-
glish datasets, such as wav2vec2.0 [1] and HuBERT [18]. For
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Figure 1: Diagram of the combination of self-supervised and semi-supervised trainings for 12.7 hours of transcribed South African
data and 200 hours of untranscribed data from other South African soap operas. XLSR-53 is further trained with the 200 hours of
untranscribed data (continued self-supervised pre-training) and used as features extractor to train a TDNN. The TDNN model can also
be trained with MFCC features. The obtained TDNN model is the seed model for the subsequent semi-supervised training with both
transcribed and untranscribed data. We follow the same procedure when running experiments on MGB.

speech recognition, these pre-trained self-supervised models are
usually fine-tuned on the transcribed training data with a stan-
dard supervised loss such as Connectionist Temporal Classi-
fication (CTC) loss [19], or lattice-free maximum mutual in-
formation (LF-MMI) loss [20, 21]. A multilingual pre-trained
model XLSR-53 [2], which is based on the wav2vec2.0 ar-
chitecture [1], performs well when used to train ASR models
for low-resource languages [2, 22, 23, 24]. However, these
large pre-trained models can still suffer from mismatch be-
tween training and testing conditions. Therefore, continued pre-
training with untranscribed data from the target domain can be
used to alleviate the domain mismatch [5, 25]. This procedure
of continual pre-training [26] alleviates the domain mismatch
while requiring orders of magnitude less data by retaining the
knowledge from the original dataset. It makes this approach
especially useful for low-resource languages.

2.3. Semi-Supervised Training

In semi-supervised training, we start by training a seed model
on the transcribed training data. Then, we use this acous-
tic model with a language model to produce pseudo-labels for
the untranscribed data. These pseudo-labels are then used as
training targets for fine-tuning the acoustic model [6]. Tra-
ditional approaches for semi-supervised training use one-best
transcripts as pseudo-labels. However, these transcripts might
contain transcription errors negatively affecting the acoustic
model. Therefore, it is necessary to perform some form of confi-
dence filtering to discard utterances with noisy transcripts [27].
Another option is to use lattices as pseudo-labels [7, 28]. This
approach circumvents the issue of erroneous one-best transcript
by representing possible alternative transcriptions and their cor-
responding uncertainties within the lattice. Popular way of per-
forming lattice-based semi-supervised training is to use lattice-
free maximum mutual information criterion [20, 7]. The limit-
ing factor of semi-supervised training is the quality of the lan-
guage model used to produce the pseudo-labels [29]. A good
language model typically needs to be trained on large amounts
of text data; in our experience, at least several hundred million
words are needed to train a strong general language model. Un-
fortunately, such large amounts of text are not available online
for many low-resource languages [30]. Furthermore, the lan-
guage modelling in these low-resource languages can further be
exacerbated by the presence of code-switching [31]. The perfor-
mance of semi-supervised training can be improved by starting

from a stronger seed acoustic model, trained with cross-lingual
transfer [32] or fine-tuned from a self-supervised model [33].

3. Improving the Acoustic Model with
Untranscribed Data

The performance of ASR systems in low-resource languages
is limited by the small amount of manually transcribed data. In
this section, we describe how we collected untranscribed speech
and how we used it to improve the performance of ASR sys-
tems using self-supervised training and semi-supervised train-
ing. Our approach consisted of three steps. First, we used
continued self-supervised pre-training of XLSR-53 on our un-
transcribed speech data. Then, we used the adapted XLSR-53
model to extract features for training of the seed model. Fi-
nally, we used this seed model to produce better pseudo-labels
for semi-supervised training on the untranscribed speech data.
The whole pipeline is illustrated in Figure 1.

3.1. Datasets

We conducted experiments on the South African Soap Op-
eras dataset [8]. This dataset contains 14.3 hours of tran-
scribed code-switched speech with people alternating between
four Banto languages and English. We used the official train-
ing (12.7 hours) and test splits (1.3 hours). The represented
pairs of languages are: English-Sesotho (eng-sot), English-
Setswana (eng-tsn), English-isiXhosa (eng-xho) and English-
isiZulu (eng-zul). We used the training transcripts (155k tokens)
to train a LM. Note that we tried to train a stronger language
model using text crawled from internet, but the resulting model
was worse than the one trained only on the training transcripts.

We also collected untranscribed speech for these South
African languages. To avoid noisy collected data for South
African languages, we identified South African soap operas on
Wikipedia and we downloaded trailers for these soap operas.
This method ensured that the crawled data was in-domain and
contained relevant languages together with other South African
languages used in the soap operas. In total we were able to col-
lect 200 hours of raw recordings which were segmented with
WebRTC VAD1 for further processing.

As a contrast, we also experimented with the BBC broad-
casts from the MGB dataset [12]. We selected 10 hours from

1https://github.com/wiseman/py-webrtcvad
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the MGB dataset for the training dataset and used another 200
hours from the MGB dataset as untranscribed data. We trained a
language model on the provided BBC subtitles (650M words).
We evaluated the performance of the models trained with the
official MGB development set using the manual segmentation.

3.2. ASR model training

We trained a five-lingual (four Bantu languages + En-
glish) South African acoustic models which used either 40-
dimensional MFCC features or 1024-dimensional XLSR-53
features as inputs. Both types of models were trained using
Kaldi toolkit [34] and used the same alignments obtained with
a standard GMM model. We used a CNN-TDNN architecture
with 16.7M parameters for the acoustic model using MFCC fea-
tures and a TDNN-F architecture with 23.7M parameters for the
acoustic model using XLSR-53 features. We did not use convo-
lutional layers with the XLSR-53 features because the XLSR-
53 model acts as a convolutional front-end. Both types of mod-
els were trained with the LF-MMI criterion [20] for six epochs
on speed-perturbed training data. The pronunciation dictionar-
ies for the four South African languages and English were built
using the NCHLT dictionaries and corresponding grapheme-to-
phoneme rules [35]. The final merged dictionary had 88 phones,
including 12 phones shared by all five languages. The vocabu-
lary size was 18.8k tokens. Furthermore, we trained a 3-gram
language model on the available training transcripts.

To improve the performance of the model using MFCC fea-
tures, we transferred parameters from a model trained either on
the NCHLT dataset [35], which contains read speech from 11
official South African languages, or on the 200 hours of English
broadcasts from the MGB dataset [12]. To deal with the mis-
match in acoustic units, we replaced the final layer of the pre-
trained model and retrained the whole acoustic model. Based
on our experience with fine-tuning of hybrid models, we used a
10-times smaller learning rate than during training from scratch,
for all layers except for the newly initialized final layer.

The acoustic model for MGB has the same CNN-TDNN
or TDNN-F architecture depending on the input features. The
language model for MGB was trained on all available MGB
subtitles making it a very strong language model.

3.3. Continued self-supervised pre-training

We used the collected 200 hours of South African speech un-
transcribed data or the 200 hours of MGB for self-supervised
training. However, since training the self-supervised models
from scratch is computationally expensive and requires a lot of
data, which might not be available for low-resource languages,
we only performed continued pre-training of a self-supervised
model using these 200 hours with the contrastive loss of
wav2vec2.0 [1]. As pre-trained model, we chose to use the
multilingual model XLSR-53, which is based on wav2vec2.0
LARGE architecture and is trained on 53 languages using a to-
tal of 56k hours of training data. Instead of using the pre-trained
model directly as an acoustic model, we used it as a multilin-
gual bottleneck feature extractor. We experimented with var-
ious pre-trained self-supervised models and extracted the fea-
tures from different layers and we found that the last layer of
XLSR-53 worked best in our scenario.2 We extracted these rep-
resentations from the last layer with the S3PRL toolkit [36] and

2Note that XLS-R [22] achieved better results than XLSR-53 in our
preliminary experiments. However due to its size we were not able to
continue pre-training it and therefore we left it for future work.

used them as inputs for a standard hybrid TDNN-F model [37].
We performed the continued self-supervised pre-training of the
XLSR-53 model with the fairseq toolkit [38] using the 200
hours of untranscribed data. We kept the hyperparameters iden-
tical to the ones used to train wav2vec2.0 LARGE [1] on Lib-
rivox. We continued pre-training for 8k iterations equivalent
to 67 epochs, with a batch size of at most 1.4M tokens and
we used gradient accumulation to simulate training on a bigger
batch size using only two Tesla V100 GPUs.

3.4. Semi-supervised training

In semi-supervised training, we used the seed acoustic model
trained on the manually transcribed data together with a lan-
guage model trained on available text data to produce pseudo-
labels for the untranscribed speech. The semi-supervised train-
ing was done using the lattice-free maximum mutual informa-
tion (LF-MMI) training criterion [20] and followed the semi-
supervised training approach proposed in [7]. We performed
semi-supervised training on a combination of the manually tran-
scribed training data and the untranscribed 200 hours. We de-
coded the untranscribed data with the seed model trained on the
transcribed data and we used the decoded lattices as pseudo-
labels for semi-supervised training. Note that, we filtered the
untranscribed data with the minimum mean recording confi-
dence threshold of 0.8 and the minimum speaking rate threshold
1.25 words per second prior to the semi-supervised training as
suggested in [39]. We trained the semi-supervised models for
six epochs.

4. Results
4.1. Baselines acoustic models

In the first set of experiments, we assessed how well cross-
lingual transfer works for South African languages. We com-
pared training the acoustic model from scratch, denoted as (1)
in Table 1, using cross-lingual transfer from a model trained on
the NCHLT dataset (2) and using cross-lingual transfer from
a model trained on the MGB challenge dataset (3). Our re-
sults demonstrated that a domain-match and data diversity in the
MGB dataset (3) is more important than training on additional
data for the target languages (2) with overall word error rates
(WER) of 50.8% and 52.0% respectively. This is because the
NCHLT data contains clean read speech, which is acoustically
very different from the speech in the Soap Operas dataset. In
addition to the noticeable background noise in the Soap Operas
dataset, the speech characteristics are also very different, for ex-
ample the average speaking rate in the NCHLT dataset is three
times slower than in the Soap Operas dataset. Subsequently,
we compared the model trained with cross-lingual transfer from
MGB (3) with a model using the multilingual self-supervised
representations obtained with XLSR-53 as input features (5).
We found that these two approaches achieved similar WER of
50.8% and 50.9%. The benefit of (3) is that it is trained on
very well matched data and (5) benefits from being pre-trained
on large amounts of multilingual data. We hypothesize that (3)
would improve even further if cross-lingual transfer was done
from a model trained on a diverse multilingual dataset, not only
on British English dataset.

4.2. Semi-supervised vs self-supervised training

In the next set of experiments, we investigated how 200 hours
of untranscribed data can help improve the performance of the
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Table 1: Word Error Rate (WER) on the test set of the South African Soap Operas dataset and the development set of MGB. For the
South African Soap Operas, the results are split by language pairs: English-Sesotho (eng-sot), English-Setswana (eng-tsn), English-
isiXhosa (eng-xho) and English-isiZulu (eng-zul).

South African Soap Operas MGB
eng-sot eng-tsn eng-xho eng-zul all dev

(1) CNN-TDNN baseline 55.9 46.6 63.9 56.6 54.7 29.4
(2) CNN-TDNN with cross-lingual transfer from NCHLT 52.8 44.5 60.4 54.1 52.0 -
(3) CNN-TDNN with cross-lingual transfer from MGB 50.1 43.8 60.8 52.8 50.8 -
(4) + semi-supervised training 48.3 42.6 59.2 51.1 49.3 24.0

(5) TDNN-F using XLSR-53 bottleneck features 49.8 45.1 61.7 51.6 50.9 25.4
(6) + continued self-supervised pre-training 45.5 40.9 56.2 47.6 46.5 21.2
(7) + semi-supervised-training 44.3 38.5 56.5 46.4 45.2 19.6

initial acoustic model. We observed that semi-supervised train-
ing with the seed models using MFCC features (3) in Table 1
performed worse than continued self-supervised pre-training of
the multilingual model XLSR-53 (6). It is worth noting that it
was crucial to combine the transcribed 10 hours of data with
the 200 hours of untranscribed data to make semi-supervised
training work on the South African dataset. Without the tran-
scribed data the semi-supervised model was worse than the
seed model. When we combined the continued self-supervised
pre-training with semi-supervised training we achieved further
gains (7). The WER of the Soap Operas dataset is reduced
by 11% relative compared to the baseline model trained with
cross-lingual transfer from MGB (3 → 7) while the WER of
the MGB dataset has a higher relative 33% gain compared to
the baseline trained with MFCC from a flat-start initialization
(1 → 7), thanks to the stronger language model. Also note
that the comparison between semi-supervised training and con-
tinued self-supervised pre-training are not completely fair, be-
cause XLSR-53 is a much bigger model than our CNN-TDNN
acoustic model. We plan to conduct a fair comparison in future.

To overcome the code-switched aspect of the Soap Operas
dataset, we tried using a language model with South African
monolingual texts crawled from the web and MGB [12] tran-
scriptions but the resulting WER were worse than using the in-
domain language model trained only on the Soap Operas tran-
scriptions. This shows that the language model domain match
is very important, especially since this in-domain language fol-
lows clear transcription conventions consistent with the test
transcription. This explains why the in-domain language model
is stronger because not all South African languages have stan-
dardised orthography and the crawled online texts might fol-
low different spelling rules, which negatively affects the WER.
Code-switching is also a mostly unwritten phenomenon, which
makes language modelling even more difficult. Furthermore,
the performance of the model could be improved by fine-tuning
the model for each language pair individually, but we chose
not to do it since we were interested in building a unified five-
lingual model. Previous works on this South African data in-
deed demonstrated that the semi-supervised training batch by
batch yields improvement over training in a single pass, as
does training bilingual acoustic models instead of a five-lingual
model [10]. Improvement also comes from adding generated
texts [40] and automatic transcriptions to build a strong LM.
However, this type of bilingual training with a strong LM is less
practical because it requires to obtain untranscribed data with a
specific type of code-switching to train the model.

5. Conclusions

In this paper, we explored using untranscribed speech data to
improve the accuracy of the speech recognition, using small
amounts of manually transcribed speech data. We added a con-
straint of using a weak language model coming from the diffi-
culty of finding accurate code-switched training texts to build
a stronger language model for South African languages. We
also evaluated our approach on a simulated low-resource set-
ting on English, with a strong language model. We found that
the best approach to improve the initial acoustic models is using
features from the multilingual XLSR-53 model with continued
self-supervised pre-training with the unstranscribed data, which
does not require any language model. This approach is partic-
ularly useful in cases like South African code-switching, where
we can only train a weak language model due to the lack of suf-
ficient amount of in-domain text. When we subsequently used
this model as a seed model for semi-supervised training, we ob-
tained a relative improvement of 11% relative compared to the
baseline model trained with cross-lingual transfer from MGB
for the Soap Operas dataset while for English, we obtained
a relative gain of 33% compared to the baseline trained with
MFCC. The improvements on the Soap Operas dataset were
much smaller than we would expect with a language model with
external language resources. For this reason, in the future, we
would like to explore ways of training better language models in
low-resource and especially code-switched settings to improve
the performance during semi-supervised training and decoding.
Finally, we would also like to follow [5] and use better regular-
ization methods during continued self-supervised pre-training.
Both these methods should allow for a more efficient continued
pre-training.We believe that our findings will be applicable to
other low-resource languages with limited amounts of text cor-
pora available.
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