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Abstract. Much information in multimedia data related to terrorist
activity can be extracted from the audio content. Our work in ongoing
projects aims to provide a complete description of the audio portion of
multimedia documents. The information that can be extracted can be
derived from diarization, classification of acoustic events, language and
speaker segmentation and clustering, as well as automatic transcription of
the speech portions. An important consideration is ensuring that the audio
processing technologies are well suited to the types of data of interest to
the law enforcement agencies. While language identification and speech
recognition may be considered as ’mature technologies’, our experience
is that even state-of-the-art systems require customisation and enhance-
ments to address the challenges of terrorist-related audio documents.
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1 Introduction

This paper reports on recent research aiming to develop audio analysis technolo-
gies to facilitate access to information, helping investigators analysing terrorist-
related activities to classify and search through audio or video documents. This
research was conducted in the context of a European project focusing on mul-
tilingual multimedia data collected from the Web, potentially of interest in law
enforcement investigations.

Analysis of this type of data poses a number of challenges rarely found in tra-
ditional broadcast data targeted by speech recognition systems. The challenges
include: a wide range of recording environments with a variety of background
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noises (heavy artillery, strong wind, rain, music, singing, crowd shouting, and
other human or mechanically produced noises); the presence of many different
native and non-native accents in multiple languages, language switching; and
various speaking styles (preaching, chanting, shouting, whispering, ...).

So far, little work has looked into analysing such data, with investigations
focusing more on telephone speech recordings for example. But today with the
exponential amounts of audiovisual content posted daily on the Web, the growing
threat of terrorism and the increasing use of Web platforms by terrorist organi-
sations, it is essential to develnop solutions to efficiently process such content.

In addition to the well-known national and international terrorist inves-
tigation units, a growing number of international projects have started
addressing the monitoring of such activities in multimedia data. lasie
(www.lasie-project.eu), ramses (www.ramses2020.eu), dante (www.h2020-
dante.eu), pericles (www.project-pericles.eu), proton (www.projectproton.
eu), takedown (www.takedownproject.eu), tensor (www.tensor-project.eu),
red-alert (www.redalertproject.eu) and victoria (www.victoria-project.eu)
all aim at retrieving and processing multimedia contents linked to criminal activ-
ities for law enforcement purposes, but research is still in its early stages.

2 Audio Analysis Tasks

The proposed audio analysis solutions include identifying the language(s) of an
audio document, transcribing speech into text and recognising specific acoustic
events. Figure 1 gives a high level use of these technologies in the context of a
tool to help humans analyse huge quantities of audiovisual data.

Fig. 1. Elements of the audio analysis process in a high-level context.

Automatic spoken language identification (LID) systems perform automatic
detection of the spoken language(s), using the characteristics of the speech sig-
nal. LID can be used as a standalone technology, for instance for categorisation
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purposes, or in association with other technologies, such as automatic speech
recognition (ASR). ASR is used to automatically produce a transcript of what is
said from the speech signal. Since ASR systems are generally language-specific,
it is often useful to combine LID with speech recognisers to provide multilingual
transcription functionality [1]. Finally, acoustic event detection (AED) is the
task of automatically recognising different types of sounds (whether impulsive,
continuous or intermittent) that can be of interest in an audio signal. AED can be
used on its own, or in association with other technologies, bringing complemen-
tary information to automatic video analysis, for example. Speaker identification
from audio is also shown in the figure but is not discussed in this paper.

The three tasks mentioned above all rely on an element called the audio parti-
tioner. It is used to divide the acoustic signal into homogeneous segments, which
are further combined into clusters. The partitioner uses a segmentation and
labelling procedure based on an audio stream mixture model [2]. After detecting
and eliminating non-speech segments, an iterative segmentation and clustering
procedure is applied to the speech segments. Each resulting cluster represents
roughly a speaker at a given acoustic condition (channel, background noise, etc.)
and is assigned a unique label containing gender and channel information.

The data used in the testing phases for each of the audio analysis tasks is a
corpus of unannotated terrorist propaganda videos retrieved from the Web. It
contains roughly 500 h of audio and 400 h of speech, as detected by the audio
partitioner. The tasks and technologies are described in the following sections,
along with results and analyses.

3 Language Identification and Code-Switching Detection

State-of-the-art language recognition technology relies on statistical methods.
The widely used phonotactic approach is based on the observation that phoneme
sequences are distributed differently across languages [3]. The basic approach
for LID was proposed in the early 90s, and relied on phone-based acoustic likeli-
hoods [4]. The approach has since been extended to using parallel phone recog-
nisers with phonotactic characteristics [6,7], lexical information [8] and phone
lattices [9]. Recently, the i-vector framework, widely adopted in the speaker
recognition community, has started being applied to the LID task [10,11].

Code switching (CS) happens when a speaker switches languages within or
between utterances. The sociolinguistic implication and motivations for CS have
been studied for several years [13–15]. CS is most commonly used by speakers
exposed to some form of bilingualism, and generally in the context of spontaneous
conversations. The presence of CS poses challenges both for LID and ASR.

Most LID research assumes that an audio document is in a single language,
but depending on the task this is not necessarily true. Different approaches were
explored to allow the LID system to analyse potential multilingual documents.
One option is to determine the predominant language only and another is to
output a list of most likely languages with associated scores. An alternative is
to partition the audio into speech segments and detect the language of each seg-
ment. This approach is suitable for detecting relatively long language segments.
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Indeed, LID is highly dependent on the segment duration, and performance can
be significantly higher on long segments, for instance longer than 10 s. To ensure
a minimal speech duration, LID can be applied to clusters of segments.

3.1 Experimental Conditions

Since LID is a classification problem based upon statistical models of speech,
the models have to be trained on data that match the targeted data in order
to achieve suitable accuracy levels. In this project, the targeted data consist of
video documents containing propaganda or terrorist training instructions. As no
task-specific training data were available, broadcast data (principally TV and
radio news, talk shows, debates and interviews) were used. This type of data
is easily available and was assumed to be the best match among the available
corpora. The training data used in this work consists of 1295 h of broadcast news
and broadcast conversation shows in 32 languages, collected during several R&D
projects. The corpus contains speech from many speakers, several dialects and
accents per language, and high variability in acoustic conditions. The amount
of training data ranges from 11 to 142 h of speech/language. The test set is
composed of the same types of data as used for training, with a total of 96 h of
speech in 23 of the 32 languages, with at least 3 h/language.

The baseline LID system’s phone decoders make use of HMM-GMM
(Gaussian mixture models) acoustic models, whereas the improved system relies
on phone decoders with output observation densities produced by (Deep) Neural
Networks (DNN) [12]. These models were used to decode the language specific
training data in order to estimate phonotactic constraints for each target lan-
guage. For testing, each data sample is then processed by one or several phone
recognisers. In addition, language-specific i-vectors were trained, and during test
an i-vector is extracted for each segment and scored against each language-
specific vector.

3.2 Experimental Results

The left side of Fig. 2 shows the language error rate (LER) of the baseline and
improved LID systems as a function of the minimal cluster duration on a broad-
cast speech test set. As expected, the performance is seen to depend on the seg-
ment cluster duration, being higher for longer segments, and lower for shorter
ones. The improved phonotactic system outperforms the baseline by up to 50%
relative for the longer segments. The phonotactic and i-vector methods were com-
pared using a single phone decoder. The i-vector system obtains better results
on short speech segments (25.2% relative), whereas the phonotactic approach
performs better on longer ones (14.3% relative).

Figure 2 (right) shows the LID output on the terrorist propaganda dataset
using the segment-cluster mode for processing. Segments shorter than 10 s were
removed in order to avoid sections falsely recognised as speech or mislabelled by
the LID system. To ensure even higher accuracy, the language confidence scores
provided by the system served to narrow down the segments retained. Of the
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Duration # System Relative
(sec) clusters Baseline Improved Reduction
≥ 2.4 3798 6.0 4.3 29.2
≥ 4.0 3744 5.3 3.5 33.3
≥ 8.0 3638 4.4 2.7 38.9
≥ 12.0 3526 3.9 2.1 48.6
≥ 24.0 3060 2.2 1.1 50.7

Fig. 2. Left: LER on a 23-language test set for the baseline and improved phonotactic
LID systems as a function of cluster duration on an the internal broadcast data test set.
Right: Proportion of speech detected per language in the terrorist propaganda videos.

files where speech was found, 16% were detected as containing more than one
language, highlighting the presence of CS in this data.

4 Multilingual Speech Recognition

The last decade has witnessed major advances in speech and language technolo-
gies, which are becoming key components for analysing human communication
in audio documents. The principles on which ASR systems are based on have
been known for many years now, and include the application of information the-
ory to speech recognition [16], the use of a spectral representation of the speech
signal, of dynamic programming for decoding, and the use of context-dependent
acoustic models [17]. Even though many of these techniques were proposed well
over a decade ago, much of the recent progress is due to the availability of large
speech and text corpora, and improved processing power which have allowed
more complex models and algorithms to be implemented.

Transcription performance varies substantially across data types. While for
well-trained ASR systems word error rates (WER) can be in the range of 5–
10% on carefully prepared speech, the error rate is easily doubled or tripled for
spontaneous speech or in degraded acoustic conditions (WER above 50%). It
is widely acknowledged that the performance of a speech recogniser is strongly
dependent upon the task, which in turn is linked to the type of user, speaking
style, environmental conditions, etc. The emergence of new online-terrorist com-
munities being so recent, very little work has been done on processing the audio
contents that they generate. The main challenges lie in the intrinsic variety of
such recordings, which can range over any type of quality and real-life situa-
tion, not to mention diversity of speakers, emotions, accents, languages, and in
particular the use of multiple languages (Code-Switching). All these conditions
require specific research in order to go beyond the state-of-the-art.

4.1 ASR System Overview

Most ASR systems have five main components: an audio partitioner, an acous-
tic model, a statistical language model (LM), a pronunciation dictionary, and a



Challenges in Audio Processing of Terrorist-Related Data 85

word recognizer [2]. As for LID, no terrorist-related data was available for sys-
tem development, so broadcast data was used for training and testing as it was
assumed to be the best match. The audio partitioner, designed for broadcast
speech, generates a sequence of non-overlapping segments and groups them into
clusters. Acoustic and language models were trained using statistical methods on
large quantities of data. The language model training data includes manual tran-
scriptions of recordings, written dialogues, news and other types of sources that
can be gathered from the Web. The acoustic models are triphone-based Hidden
Markov Models, with output observation probabilities given by DNNs [12]. For
each language, the acoustic models were built using state-of-the-art discrimina-
tive training methods and trained on several hundred hours of annotated data
(audio recordings and their associated transcriptions). The phone sets cover
the language-specific phones and special units to model silence, breath and filler
words. The pronunciation dictionaries are built with grapheme-to-phoneme rules
derived from linguistic knowledge, complemented with exception rules as needed.

4.2 Experimental Conditions and Results

Six languages are targeted for ASR: Arabic, English, French, Italian, Portuguese
and Spanish. Table 1 displays the WER for the baseline and enhanced systems on
internal broadcast datasets. Developments for the improved systems involved, in
particular, new acoustic modeling based methods on time-delay neural networks
(TDNNs) [18] and acoustic data augmentation, including speed and volume per-
turbation, addition of background noise and reverberation. Both methods have
been proven effective to make models more robust to noisy environments and
help cope with mismatches between training and testing data [19,20].

Table 1. Word error rate (WER (%)) on an internal broadcast speech development
data set with at least 3 h of data from a minimum of 20 speakers per language.

Language Arabic English French Italian Portuguese Spanish

Baseline 9.6 13.3 13.7 9.9 14.2 11.2

Improved 8.9 10.5 11.3 8.1 13.8 10.2

Figure 3 shows an audio excerpt with segments in 3 different languages
(English, Arabic and French), with their corresponding automatic transcripts.
LID and ASR were jointly applied to produce multilingual speech-to-text.

A subset (7 h) of the terrorist propaganda dataset was manually selected
and annotated for testing. This was performed in Arabic, because of its overall
predominance in the data, and in English, for demonstration. The ASR system
was used to produce a transcript of the audio, and the output was scored against
the reference transcripts. Initial results show a considerable decrease in accuracy
when compared to those reported in Table 1. The baseline Arabic system obtains
a WER close to 30% on this data (compared to 9.6 on the broadcast speech
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Fig. 3. ASR an audio excerpt containing segments in 3 different languages.

test set), and the English system nearly reaches 44% (compared to 13.3% on
a broadcast speech test). The enhanced English system was also tested on this
dataset, resulting in a 39% WER (11.5% relative gain compared to the baseline).

These results, which can in part be attributed to the difference between the
target and and training data, highlight the difficulty of the task at hand.

Some challenging aspects of the terrorist propaganda audio were noticed
across all languages. The speech partitioning is perturbed by the strong presence
of chanting and preaching that can easily be mistaken for speech, as well as a
wide range of background noises. Many files have a relatively low audio quality:
the microphones are often placed far from the speakers, sometimes bringing
environmental noise to the foreground instead of the speech. In addition, the
ASR language models and lexicons are not adapted to this data, the vocabulary
and formulations being quite different from those of the training data. For the
English speech in particular, strong accents of non-native speakers are sources
of many errors. The speech also contains many hesitations and grammatical
errors that do not match well with the language models. CS with Arabic is also
omnipresent, and over 8% of the words in the reference transcripts are not in
the ASR lexicon. As shown in Table 2, even words of Arabic origin that are now
commonly used in English are often missed as their Arabic pronunciations can
be very different from those in the English lexicon.

Table 2. Common Arabic words with their English and Arabic pronunciations
(mapped to the English phone set). Differences are shown in color.

Word Occurences Recognized English pron Arabic pron

Jihad 36 24
JIhad JIh@d Jihad Jih@d

Zihad

Allah 169 3
@lx

alah

Mujahideen 24 11 myuZxhxdin muZxhxdin

myuJxhxdin muJxhxdin

muZahidin
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5 Acoustic Event Detection

Sounds carry a large amount of information about our environment and the
physical events that take place in it. Humans naturally perceive the sound scene
around them (busy street, office, etc.), and can recognise individual sound sources
(car passing by, footsteps, etc.). For decades researchers have been fascinated
with the idea of machines that could hear and understand audio content just
like humans do, referred to as ’machine listening’. Developing signal processing
methods to automatically extract this information has huge potential in several
applications. The goal of AED is to label temporal regions within an audio
recording, determining the start, end and the nature of sound instances. The
output can be exploited jointly with other technologies, such as image or video
recognition services, bringing valuable complementary information to the table.

Interest in AED has been increasing over recent years, with public challenges,
such as DCASE (http://dcase.community), helping to boost research in the field.
Unfortunately, most benchmarks and available datasets are not very relevant to
this project. In addition, published detection and classification performances on
similar tasks are still quite low. Even when only trying to detect a few categories
of events, performance remains relatively low (compared to what is seen nowa-
days with ASR). This illustrates the difficulty of the task and the progress that
is still to be made in order to reliably recognise sounds in realistic soundscapes,
where multiple sounds are present, often simultaneously, and distorted by the
environment. It is important to note that most challenges primarily address
classification of events, eliminating altogether the detection stage which adds
another level of difficulty. The closest work to ours is that of Google AudioSet
described in [21].

5.1 System Description

Neural Networks have proven to be very efficient for speech processing activi-
ties, recently resulting in a significant leap in system accuracy. But for AED, the
trend to use Deep Convolutional Neural Networks [22] has shown less convincing
results in the 2017 DCASE challenge (http://www.cs.tut.fi/sgn/arg/dcase2017/
challenge/index) [23]. This is probably due, in part, to the lack of well-annotated
data to work with, and of course, to the inherent complexity of the task. In order
to incorporate the AED system as shown in Fig. 1, implementing CNN-based
models would have required major modifications to the structure of the parti-
tioner. Therefore, for initial experiments, the same acoustic feature extraction
methods as for speech were used, allowing a simpler incorporation of new events
into the existing technology.

Sounds of interest were selected in collaboration with law enforcement part-
ners, and further narrowed down according to their availability in publicly avail-
able datasets. Out of 15 corpora inventoried, of various sizes and containing
many sub-corpora, only a few covered the audio events of interest, and Google
AudioSet (https://research.google.com/audioset) was the only one to cover all
of them. It contains over 2 million semi-automatically labeled 10-second sound

http://dcase.community
http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/index
http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/index
https://research.google.com/audioset
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clips drawn from YouTube videos with a hierarchical ontology [21], partially
validated by humans.

Given the large disparities in the available data (both in quantity and qual-
ity), only a few events of critical importance were experimented with in a first
validation stage. In addition to speech, four acoustic events were focused on:
explosions, shootings (gunshots and machine guns), and Nasheed (singing). The
Nasheed is a work of vocal music that usually makes reference to Islamic beliefs,
and is meant to inspire Muslims to practice Jihad. This type of singing, shown
on the left of Fig. 4, having formant structure similar to speech, is often present
in terrorist propaganda recordings and was designated as an important sound
to detect by the law enforcement agencies.

Fig. 4. Spectrograms of singing with background music (left) and preaching (right).

In order to be seamlessly integrated in the audio partitioner, GMMs were
used to model the acoustic events. The GMMs for the audio segmentation and
labelling procedure use basically the same acoustic feature vector as what is
typically used for ASR with the exception that it does not include the energy,
but does use the delta energy parameters. For speech and general music, we used
the MUSAN music, speech and noise corpus [24], composed of 109 h of precisely
annotated audio. GMMs for the other acoustic events were trained using data
extracted from the Google Audioset corpus. Finally, the model for the Nasheed
was trained on manually annotated data from real terrorist propaganda videos,
since it was not included in the AudioSet ontology.

5.2 Experimental Results

Table 3 gives the results of a manual validation of a randomly selected subset of
the acoustic events detected in 100 h of audio from the propaganda corpus.

It can be seen that the number of correct detections (validated) is highest
for singing, for which carefully annotated training segments were used. There
are more false alarms than correct detections for the other 3 categories, with the
largest number of false alarms on gunshots. One explanation may be that since
these models were trained on 10-second AudioSet samples, there can be other
sounds in the segment, which may impact shorter events more than longer ones.

Figure 5 shows a spectrogram of an audio segment classified as machine gun-
fire. While the regular burst seen in the signal and the spectrogram correspond to
machine gunfire, the three darker, longer bursts are explosions overlapping with
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Table 3. Manual validation of a random subset of approximately 400 automatically
detected acoustic events. The numbers correspond to the total number of detections,
the correct/incorrect/unclear detections (Validated/False Alarms).

Acoustic event Detected Validated False alarm Unclear

Explosion 1564 95 149 63

Gunshot 1207 36 402 22

Machine gun 927 71 293 27

Singing 4745 154 143 11

the gunfire. There are many other polyphony instances, with impulsive acoustic
events overlapping other continuous or repetitive events such as singing, wind,
speech, steps, etc. Many of these sounds are difficult even for humans to distin-
guish, for example machine gunfire can sound like fireworks or a loud engine.

Fig. 5. Spectrogram illustrating explosions alternating with machine gunfire.

Fig. 6. Spectrograms of single and multiple gunshots (left, middle) and a clang (right).

5.3 Challenges

Some major challenges are still to be tackled. First and foremost, data anno-
tation needs to be improved. The study of the different corpora on AED, and
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the manual annotation process that was begun show that, even for humans,
annotating sounds is a very difficult task. When one is actually within an envi-
ronment, many sources of information are received about what is happening, but
when listening to audio a posteriori without knowing the context, it is difficult
for the human ear to distinguish between similar sounds (as shown by the last
column in Table 3). This is also illustrated in Fig. 6 which shows spectrograms
of a single and multiple gunshots (left, middle) and a clang that was mistakenly
detected as a gunshot. Many acoustic events can easily be confused, and have
almost identical spectral features. For example a ’bang’ can be an explosion, a
gunshot, thunder, a firecracker, etc. A first step in future works will need to be
the careful selection of events to annotate, the definition of exactly how they
should be annotated and the use of as much context as possible to annotate
them (exploiting the video images, for example, when available).

A second major difficulty for AED tasks is the issue of polyphony. Unlike
speakers who usually try to take turns speaking, there can be an infinite num-
ber of overlapping sound events and it is therefore nearly impossible to try to
detect and recognize them all. The majority of work on AED treats the sound
as monophonic, assuming that only one event is detectable at a time, but, in
most real-world situations, sounds overlap and events of interest can co-occur
(as shown in Fig. 5 which has explosions overlapping with machine gunfire).

6 Summary and Discussion

This paper has presented some of the challenges in the automatic processing of
terrorist-related audio data found on the Web and some of the initial progress
made in addressing these challenges. Concerning language identification and code
switching, phonotactic and i-vector methods have been explored, and improved
decoders developed. Segment-cluster based LID was introduced to handle mul-
tiple languages in an audio document.

Concerning speech recognition, improved acoustic models have been devel-
oped for the 6 languages of interest in the project using the latest acoustic mod-
elling techniques. Acoustic data augmentation was used to increase the amount
and variability of the training data thereby improving genericity and reduc-
ing the mismatch between the training and test data. Future developments will
address improving the language model components by locating texts that are
close to the targeted data, and improving the pronunciation lexicon for accented
speech. We have also started exploring bilingual decoding as a means of handling
code-switching, where two ASR systems process the data in parallel, allowing a
language switch at each word.

It is interesting to note that it was considered a huge challenge when the
National Institute of Standards and Technology (https://www.nist.gov/itl/iad/
mig/rich-transcription-evaluation) first proposed the task of automatically tran-
scribing broadcast news data back in the 90’s. Until that time ASR had mainly
addressed processing of read speech, dictation or simple constrained tasks that
did not need to deal with heterogeneous data, multiplicity of speakers and acous-
tic conditions, speech in the presence of music, etc. Today the transcription of

https://www.nist.gov/itl/iad/mig/rich-transcription-evaluation
https://www.nist.gov/itl/iad/mig/rich-transcription-evaluation
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broadcast news data is considered a relatively simple task compared to less
formal data types such as conversational speech, amateur youtube videos and
multiparty meetings [25]. Therefore, we can hope that similar progress will be
made in the future at transcribing challenging terrorist-related audio.

Acoustic event detection is still in its early stages, but research on comparable
problems such as object detection in images has recently shown astonishing
results. The polyphony issue is still a long way from being solved, and is one of
the reasons why AED is considered by many specialists as a very difficult task.
However, with a better annotation process, machine performance is expected to
improve. A semi-supervised method relying both on automatic recognition and
human validation at a finer scale than was used for the AudioSet labels could
be the key.
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