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Abstract
Speech recognition for low-resource languages remains

challenging and can be addressed with techniques such as multi-
lingual modeling and transfer learning. In this work, we explore
several solutions to the multilingual training problem: training
monolingual models with multilingual features, adapting a mul-
tilingual model with transfer learning and using language em-
beddings as additional features. To develop practical solutions
we focus our work on medium size hybrid ASR models. The
multilingual models are trained on 270 hours of iARPA Babel
data from 25 languages, and results are reported on 4 Babel lan-
guages for the Limited Language Pack (LLP) condition. The
results show that adapting a multilingual acoustic model with
language embeddings is an effective solution, outperforming
the baseline monolingual models, and providing comparable re-
sults to models based on state-of-the-art XLSR-53 features but
with the advantage of needing 15 times fewer parameters.
Index Terms: speech recognition, low-resource languages,
multilingual modeling, language embedding

1. Introduction
In recent years, multilingual approaches have emerged as a
promising solution for improving speech recognition accuracy
in low-resource languages, leveraging the shared linguistic fea-
tures across multiple languages to overcome data scarcity and
resource limitations. Multilingual acoustic models training has
previously been explored by pooling data coming from different
languages and using different criteria such as Lattice-Free Mu-
tual Maximum Information (LF-MMI) [1], End-to-End cross-
entropy-based models [2, 3] and meta learning [4] showing
the potential of multilingual pre-training. While these mod-
els generally outperform monolingual models trained on lim-
ited amounts of data, they can still be improved by using some
task-specific data. This problem is usually performed using
transfer learning [5] with a monolingual labeled data set as
a target. Besides being used as adaptable acoustic models,
multilingual networks can also be used as a feature extractor
where bottleneck features are computed and fed as input to help
make hybrid HMM/DNN models more robust. The XLSR-53
model [6] is an example of such models based on the large ver-
sion of Wav2vec2.0 architecture [7] and trained with a con-
strastive loss, learning to recognize latent speech representa-
tions. XLSR-53 is trained on about 50k hours of untranscribed
training data in 53 languages and comprises 300 million pa-
rameters. In the context of speech recognition in low-resource
settings, it is common to add layers on top of the last layer.
The weights of the added layers are estimated with a supervised
loss function, such as LF-MMI [8] or Connectionist Tempo-
ral Classification (CTC) [6]. Moreover, speech representations

from XLSR-53 can also be used as multilingual features to train
a monolingual model. These approaches are state-of-the-art
for speech recognition for low-resource languages. However,
XLSR-53 models are very large and complex, requiring signifi-
cant computational resources to train and deploy. This can make
it difficult or expensive to use these models in real-world appli-
cations.

An alternative solution is to provide a language embedding
as input in order to help condition the ASR system’s output on
language-specific features. This can be achieved by provid-
ing a one-hot encoding vector as “conditional input” in order
to specify the language of each speech segment [9]. A second
solution is to use an acoustic language embedding (such as x-
vector or d-vector) which can be viewed as “segmental features”
that carry information related to the acoustic characteristics of
each language. Language embeddings have been previously in-
tegrated with multilingual DNN acoustic models, trained with
cross-entropy [10, 11] and LF-MMI [12] and End-to-End mod-
els [13]. [12] uses in particular x-vector-based language embed-
dings in an unified system for speech recognition and language
identification. Besides using speaker [14] and language as tar-
gets, accent embeddings have also been explored in [15, 16]
to improve the acoustic models performance in the context of
multi-accent ASR and showed that segment-level embeddings
is able to capture high-level accent-related information.

In this paper, we compare solutions to the multilingual
modeling problem, with different types of input features and
the use of x-vector embeddings to capture language-related in-
formation. We also evaluate language x-vector against language
one-hot encoding vector. We evaluate these solutions in tandem
with a large Wav2Vec2.0 (XLSR-53) and a compact TDNN-F
multilingual models using the iARPA Babel data set in order
to show the potential of each component in the context of very
limited training data.

2. Data sets
In this section, we present the data sets used to train and evaluate
the developed ASR models.

2.1. Training data

We use the 8kHz Conversational Telephone Speech data from
the iARPA Babel program [17], which is spontaneous speech
collected for 25 low-resource languages in several acoustic en-
vironmental conditions. We focus on two different low-resource
conditions:

• The first setting uses the Limited Language Packages (LLP)
of Babel to study the effect of the developed techniques on
low-resource languages. The LLP contain around 10 hours



for each language and we will refer to this amount of hours
to signify LLP conditions for the remaining of the paper.

• A second setting corresponding to a very low-resource con-
dition obtained by randomly selecting a subset of 2.5 hours
from the LLP training data for each of the target language.

For each condition, we limit the amount of text data to train
the language models to only the transcriptions of the audio data
(i.e. 10h or 2.5h). This means that the only available data for
each language is the limited acoustic data and its manual tran-
scripts. Such conditions are quite common when developing
ASR systems for very low resource languages.

2.2. Test data

All experiments were evaluated using the official Babel devel-
opment sets for Amharic (amh), Assamese (asm), Georgian
(geo) and Kurmanji (kmr). The target languages were chosen
so that they cover several language families (Afro-Asiatic, Indo-
European and Kartvelian) and characteristics to validate our ap-
proach in a variety of languages.

2.3. Data augmentation

The original Babel data are augmented with 3-fold speed per-
turbation, data reverberation and addition of background noises
(point-source noises, real room impulse responses and isotropic
noises 1).

3. Methods
3.1. Multilingual models

Building a multilingual acoustic model can help overcome the
constraints due to the limited amount of training data available
for low-resource languages by leveraging common phonemic
features across different languages.

The multilingual models in this work are trained with two
multilingual data sets. The first one uses all 25 of the Babel
languages under the LLP conditions, for a total of 270 hours.
The second multilingual model uses all Babel languages (LLP
condition) after excluding the four test languages, for a total of
220 hours.

Training such multilingual models requires the careful se-
lection of a shared phone set which should, not only, take full
advantage of the available Babel data and accurately cover any
language’s segmental inventory, but also generalise well to other
“unseen” languages (universal phone set).

3.1.1. Phone set definition

The PHOIBLE [18] repository contains the phonological inven-
tories for over 2,000 languages (including the ones present in
Babel) and is a valuable resource while defining the phone set
by paying particular attention to the phones/allophones frequen-
cies in each language. The full procedure to define the multilin-
gual phone set is as follows:

1. Building a common phonetic inventory: We use Epitran
[19] and Espeak-ng 2 to generate phonetic lexicons based on
the IPA for all supported languages (multiple pronunciations
are kept for languages present in both Epitran and Espeak-
ng). Due to the high level of phonetic granularity provided
by these tools, the resulting phone set on 25 languages can be
quite large (more than 100 phones) and requires reduction.

1https://www.openslr.org/28/
2https://github.com/espeak-ng/espeak-ng

2. Reducing the phone set: The primary phone set can be re-
duced in different ways. First, suprasegmental qualities such
as stress, length, pitch and tone are stripped away. Then, im-
plosive and ejective variants of each consonant are combined.
These steps are carefully carried out after checking the most
frequent phones for each language on PHOIBLE and avoid-
ing the combination of frequent discriminative phones.

3. Filtering rare phones: Based on the PHOIBLE phonologi-
cal inventory of each Babel language, the rare phones (where
the representation is lower than 5%) are mapped to the clos-
est (and more frequent) phones remaining from the previous
step.

For the four languages unsupported by Epitran/Espeak-ng
(Dholuo, Haitian Creole, Igbo and Mongolian) the phonetic
dictionaries provided by iARPA as part of the Babel project
are used and their phones are mapped to the final multilingual
phone set. The resulting phone set used in the remaining of
the paper contains 70 phones in total; 67 speech phones and 3
non-speech phones representing silence, filler words and breath
noise.

3.1.2. Model Architecture and Training

The multilingual acoustic models are based on the Factorized
Time Delay Neural Network (architecture TDNN-F) [20] and
trained with the augmented data for 4 epochs . They are com-
posed of 15 TDNN-F layers. The baseline models use 41-
dimensional PLP features which are spliced (x3) and trans-
formed with an LDA.

The alignments for the final TDNN-F model training (with
augmented data) come from another TDNN-F model trained for
6 epochs with alignments of non-augmented data obtained with
a standard HMM/GMM model. Kaldi toolkit [21] is used for the
neural network training with the LF-MMI loss function [22].

3.2. Language embedding

To help the training of the multilingual acoustic model, lin-
guistic information can be added by concatenating a language-
related vector to the input features for each frame.

3.2.1. Language one-hot encoding

The language identity can be given through a fixed-length vec-
tor. However, it requires all target languages to be seen during
the training. In particular, a 25-dimensional one-hot encoder
vector is created to indicate which language the utterance is
spoken in. During inference on a target language, the one-hot
encoder corresponding to the language to decode is provided to
the model.

3.2.2. Language x-vector

For speech recognition for an unseen language, the one-hot en-
coder is no longer usable. A learned language embedding can
replace the one-hot encoder vector in the inputs of the multi-
lingual acoustic model and hopefully carry enough implicit lin-
guistic information about the unseen language.

For this work, we choose to use the x-vector as language
embedding. Mostly used for speaker recognition [23], the
x-vector model consists of a feed-forward DNN/TDNN that
maps sequences of variable-length speech features to fixed-
dimensional embeddings. In the context of language adaptation,
the x-vector extractor is trained to discriminate the languages.
The architecture of the x-vector extractor used in our work is



similar to the one used for speaker identification as described
in [24]. The language x-vector extractor has 3.2 million pa-
rameters. It is trained for 5 epochs with a learning rate ranging
from 0.001 to 0.0001. The training data set is identical to the
training data set for the multilingual acoustic models but is auto-
matically segmented to remove audio segments without speech.
Data augmentation is also applied.

To improve the robustness of the language x-vector, the
pooling layer computes the statistics (mean) for all speech turns
of the same speaker. A 128-dimensional language embedding
is thus obtained for each speaker.

3.3. Transfer learning

To improve the accuracy of the multilingual model for a given
target language, a transfer learning step is added using limited
language adaptation data. Transfer learning can be done by con-
tinuing the training of the multilingual model with the target
language data. Alternatively, as proposed in [5], one can re-
place the last few layers of the multilingual model by randomly
initialized layers with the last one corresponding to the output
of a monolingual model. We refer to this last method as adapta-
tion for the remaining of the paper. For this work, one to three
final layers of the multilingual acoustic model are replaced and
trained from a random initialization.

Different parameter settings can be explored while perform-
ing transfer learning such as the learning rate and the number
of epochs which can vary depending on the amount of target
data available. Other parameters such as l2 regularization con-
stant can also be used to control the penalty imposed on the loss
function and prevent the model from overfitting to the source
task and help the model generalize better to the target task. The
learning rate factor is another parameter that should be chosen
carefully to control the rate at which the parameters of the neu-
ral network model are updated during training. During adap-
tation, we experimented with a range of learning rates (from
5.10−5 to 1.10−3) multiplied by different factors according to
the updated layers (0.1 or 1.0), to avoid losing too much in-
formation from the multilingual pre-training. We adapted the
model for 3 epochs.

3.4. Features

The multilingual phonetic TDNN-F acoustic model can also be
used as a feature extractor. The extracted bottleneck features
are then fed to a separate acoustic model. This allows the ASR
model to benefit from the high-level, compact representations of
speech signals provided by the bottleneck features, while also
allowing the model to be trained on a smaller data set, therefore
requiring less computational resources. The bottleneck features
are extracted from the 15th layer of the multilingual model,
and used to train a new monolingual TDNN-F model, using the
alignments obtained by the original monolingual model trained
on the non-augmented data.

We compare these bottleneck features to features extracted
from self-supervised models. Here we only consider features
extracted from XLSR-53 to keep the number of parameters for
the full pipeline of the ASR system reasonable and the computa-
tional resources at a minimum. For the sake of keeping the used
resources as low as possible, features from the XLS-R models
[25] have not been used even if we expect an improvement with
these features, thanks to the additional data and number of pa-
rameters present in these bigger versions of XLSR-53.

The S3PRL toolkit [26] is used to extract the 1024-
dimensional features from the last layer of the XLSR-53 model

and PyKaldi [27] is used to convert the features to Kaldi format.

4. Results
The experimental results are presented in Table 1 for the 4 tar-
geted languages. The monolingual baselines WERs are given
in rows (a) and (b) and correspond to models trained either with
nominally 10h or with 2.5h of data from the iARPA Babel cor-
pus. The TDNN-F acoustic models include respectively 11 mil-
lion and 8 million parameters, with the model sizes chosen to
minimize the WERs. For both conditions we use a 3-gram lan-
guage model trained only on the manual transcripts of the audio
training data. The language model data is limited to the avail-
able transcriptions for each condition, even though work in the
Babel program showed that using additional external texts gen-
erally improved recognition performance, in particular by re-
ducing the out-of-vocabulary rate. The average WERs over the
4 languages are 59.6% and 84.3% for the 10h and 2.5h training
conditions, respectively.

It should be be noted that better results have been reported
on the same data in the Babel program [28] and more recently
for the OpenASR21 3 challenge [29, 30]. However these results
were obtained using considerably more language model training
data than just the acoustic data transcripts. Using more texts for
the LM training we easily lower the WER to under 40% on
Amharic with the same acoustic models.

The results with the multilingual acoustic models are given
in rows (c) to (l), where here the training data used to build the
baseline models is used for adaptation. To allow for meaningful
comparisons, the size of the acoustic model is given for each
condition. The multilingual acoustic models are trained as de-
scribed in section 3.1, using either a set of 25 languages includ-
ing the 4 target languages, or on the remaining 21 languages
after excluding the 4 target languages. In all cases, the lan-
guage model is trained on the transcripts of the adaptation data
of the target language (10h or 2.5h). The average WER using
the unadapted multilingual acoustic models, without and with
language embeddings (rows c and d), are respectively 57.8%
and 55.0%. It can be seen that multillingual model outperforms
the monolingual one by 4.6% absolute and also demonstrates
the effectiveness of the language embeddings (a 2.2% absolute
gain).

Adapting the multilingual acoustic models with the 10h tar-
get language data reduces the average WER from 55.0% (row
d) to 52.1% (row f). Two adaptation conditions were consid-
ered: adaptation with and without language embeddings, both
with changing the last layers of the network. Adaptation results
are also given using only 2.5h of target-language data, resulting
in an average WER of 59.4% (row h). However, the experimen-
tal results with 2.5h of adaptation data for Amharic degrade and
lower the average results, for a reason we have not yet under-
stood.

Results comparing the language one-hot encoder and the
language embedding for the multilingual models trained on 25
languages are given in Table 2. If the identity of the language is
provided with the language one-hot encoder, the average WER
of the unadapted multilingual model (57.8%) is reduced by an
absolute 2.2% (row r) to 55.6%. A larger improvement is vis-
ible when adapting the multilingual model using the 10h adap-
tation data set (row u). The results also show that language
x-vector outperforms the language one-hot encoder, without or
with adaptation (rows (s) and (v) in the table).

3https://sat.nist.gov/openasr21



Table 1: WER (%) of monolingual models, multilingual models without and with adaptation using 10h or 2.5h of target language data,
and monolingual models using multilingual features. Results are given for 4 iARPA Babel languages: amharic (amh), assamese (asm),
georgian (geo) and kurmanji (kmr) as well as an overall average.

# parameters amh asm geo kmr average

Monolingual acoustic and language models

(a) monolingual model trained with 10h 11.3 M 53.7 60,3 55.4 69.1 59.6

(b) monolingual model trained with 2.5h 8.2 M 74.0 89.4 84.4 89.3 84.3

Multilingual model (25 languages), LM trained on adaptation data (10h or 2.5h)

(c) no adaptation 18.5 M 54.0 58.3 54.6 64.3 57.8
(d) with language embedding 18.7 + 3.2M 50.0 54.9 51.0 64.1 55.0

(e) adaptation with 10h 18.3 M 48.5 52.7 48.5 63.0 53.2
(f) with language embedding 18.3 + 3.2 M 47.3 51.4 47.6 62.0 52.1

(g) adaptation with 2.5h 18.3 M 50.9 58.8 59.4 67.3 59.1
(h) with language embedding 18.3 + 3.2 M 55.0 57.4 58.9 66.4 59.4

Multilingual model (21 languages), LM trained on adaptation data (10h or 2.5h)

(i) adaptation with 10h 18.3 M 48.7 52.7 49.0 62.9 53.3
(j) with language embedding 18.3 + 3.2 M 48.5 51.8 48.2 62.2 52.7

(k) adaptation with 2.5h 18.3 M 52.0 59.2 60.5 68.0 59.9
(l) with language embedding 18.3 + 3.2 M 56.1 58.8 59.7 67.1 60.4

Monolingual models trained with multilingual features, LM trained on adaptation data (10h or 2.5h)

(m) features from PLP TDNN 10h 18.5 + 11.3 M 49.8 54.7 51.2 63.6 54.8
(n) with language embedding 18.7 + 11.3 + 3.2 M 48.9 53.4 50.9 63.6 54.2

(o) features from XLSR-53 10h 300 + 11.3 M 46.9 51.0 45.6 61.1 51.2
(p) features from XLSR-53 2.5 h 300 + 8.2 M 61.1 72.3 63.9 61.2 64.6

Table 2: Comparing one-hot language encoder vector to a lan-
guage x-vector without and with adaptation. Average WER (%)
for amh, asm, geo and kmr development sets of Babel, using
multilingual models trained with 25 languages, including the
target languages.

(q) multilingual model trained on 25 languages 57.8
(r) with language one-hot encoder 55.6
(s) with language embedding 55.0

(t) adaptation with 10h 53.2
(u) with language one-hot encoder 53.1
(v) with language embedding 52.1

The results obtained with multilingual acoustic models
trained on only 21 languages (excluding the 4 targeted lan-
guages) are given in rows (i) to (l) of Table 1. It can be seen
that removing the target languages has only a small impact on
the average WER (increasing it from 52.1% to 52.7%).

Results using multilingual features are given in rows (m) to
(p) in Table 1. Models using the multilingual features (rows m
and n) derived from the multilingual model perform less well
than the adapted multilingual models (54.2% versus 52.1%).
The use of XLSR-53 features for 10h training condition gives
very competitive results: with an average WER of 51.2%, it
is slightly better than the result obtained with the multilingual
model (52.1%). However it is important to point out that the
XLSR-53 is 15 times larger and that untranscribed training data
includes the iARPA Babel FLP data for Georgian and Kurmanji.

The average WER for the 2 other languages are closer, 49.0%
for XLSR-53 features (row o) versus 49.4% for the multilingual
model (row h). For the 2.5h training condition, the multilingual
model outperforms the XLSR-53 features (average 59.4% ver-
sus 64.6% across the 4 languages).

5. Conclusion
In this work we have compared acoustic models and training
methods for low-resource speech recognition with the goal of
keeping the models small and efficient. We found that the adap-
tation of a multilingual model with language embeddings ap-
pears to be a very effective solution to allowing the average
WER on the 4 target languages to be reduced from 59.6% to
52.1% for the 10h training condition, and from 84.3% to 60.4%
for the 2.5h training condition. The use of language embed-
dings increases the precision of the multilingual model both be-
fore and after adaptation. The use of multilingual XLSR-53
features yields comparable results, but at the cost of increas-
ing the model size by a factor 15. It should also be noted that
better results can be obtained and have been reported on these
4 languages by using all of the available Babel data for acous-
tic modeling with a semi-supervised training [28], adding other
textual resources for language modeling and generating artifi-
cial textual data to further improve the LM [31]. ASR systems
based on fine-tuning self-supervised models also perform better
than our approach [6, 8] by benefiting from more textual data,
but these approaches based on a better LM are not in the scope
of this work which focuses on the acoustic modeling in low-
resource speech recognition.
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