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ABSTRACT

The combined use of multi layer perceptron (MLP) and per-
ceptual linear prediction (PLP) features has been reported
to improve the performance of automatic speech recognition
systems for many different languages and domains. However,
MLP features have not yet been used on unsupervised acous-
tic model training. This approach is introduced in this paper
with encouraging results. In addition, unsupervised language
model training was also investigated for a Portuguese broad-
cast speech recognition task, leading to a slight improvement
of performance. The joint use of the unsupervised techniques
presented here leads to an absolute WER reduction up to
3.2% over a baseline unsupervised system.

Index Terms— Unsupervised Training, MLP features,
Acoustic Modeling, Language Modeling

1. INTRODUCTION

Acoustic (AM) and Language Models (LM) are two main
components of any Large Vocabulary Continuous Speech
Recognition (LVCSR) system. Usually, training these models
requires large amounts of data to achieve suitable perfor-
mance levels. In practice, for acoustic modeling, it implies
the need to transcribe hundreds of hours of speech. However,
obtaining manual transcriptions is an expensive and time-
consuming task. For languages that have a small number of
speakers, it might be even harder, since engaging and training
“annotators” becomes an arduous step in the transcription
process. On the other hand, language models are usually es-
timated using millions of words. For a number of languages
and domains, text data can be gathered from the Web. How-
ever, it is known that audio transcriptions play a major role in
language modeling, helping to generate better LM estimates.

To alleviate the need of manual transcriptions during sys-
tem development, unsupervised training methods can be used.
Unsupervised acoustic model training (AM-UT) is a tech-
nique that has been gaining popularity over the last years
and has been successfully applied to different languages [1,
2, 3, 4, 5] and domains, such as Broadcast News [2, 6, 7],
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Broadcast Conversations [2] and Conversational Telephone
Speech (CTS) [8, 9]. Notwithstanding, few results have been
reported concerning unsupervised language model training
(LM-UT) [9] or adaptation [10].

Most of the published experiments on AM-UT make use
of Hidden Markov Models (HMMs) based on raw features,
such as perceptual linear prediction (PLP) [11] features, ex-
tracted directly from the audio stream. On the other hand, the
combined use of PLP and multi layer perceptron (MLP) fea-
tures have consistently been reported to improve LVCSR per-
formances when the models are trained in a supervised man-
ner [12, 13, 14]. Despite that, no studies have been reported
in which unsupervised training methods have been applied
to estimate the MLP parameters. In this paper, we propose
to address this issue. In comparison to PLP models, the un-
supervised training of MLP-based models introduces a new
source of uncertainty. In addition to the HMMs, it is also nec-
essary to estimate the parameters of the MLP neural networks
that are used during feature extraction. The topic of LM-UT
is also addressed in this paper. It is shown that the use of
automatic transcriptions lead to a small gain of performance
in language modeling on a broadcast recognition task. Since
manual transcriptions were available, the unsupervised sys-
tems were compared with their equivalent supervised ones.
Similar comparisons were performed on a CTS recognition
task using PLP features [8, 9]. Such analysis helps to mea-
sure how much of performance is lost when labelled data is
not available, and to identify possible weaknesses of the un-
supervised training approach.

This work was performed using a system developed for
Portuguese, which is one of the languages with the highest
number of speakers in the World, but has received less at-
tention in the community than other languages like English,
Arabic or Mandarin. The unsupervised approaches assessed
here can be applied to any other language, since the focus is
on the impact of audio transcriptions on system development.

This paper is presented as follows. Section 2 describes the
task and system in which the experiments were carried out.
The following section describes the experiments realized in
LM-UT. Section 4 is dedicated to AM-UT with PLP and MLP
features. A final discussion and conclusions are presented in
Section 5.



2. TASK AND SYSTEM OVERVIEW

The experiments were carried out using the LIMSI speech
recognition toolkit, with acoustic, lexical and language mod-
els developed for Portuguese and tested with broadcast data.

2.1. Corpora

The manually transcribed training data used in these exper-
iments were collected under the Quaero Programme 1. This
corpus, henceforth referenced as trn11, contains about 56
hours of speech of shows broadcast between June and De-
cember 2010. The amount of data is roughly equally shared
between Broadcast News and Broadcast Conversations. The
development (dev) set contains about 3.5 hours of data with
manual reference transcriptions and consists of shows broad-
cast on January 2011.

The language model training data include about 640 mil-
lion words from nine different written sources, such as news-
papers, newswires and blogs. These data cover the period
from 1991 to 2010. About 30k words of transcriptions from
RTP shows broadcast in 2000 were also used. The manual
transcriptions of the trn11 set used on the estimation of the
supervised models contain about 560k words. The text data
was normalized in order to convert numerical forms (cardinal,
ordinal, date, currency...) and abbreviations to spoken forms.
A 3-gram casing LM, trained from pre-selected text sources,
was applied to all texts, except the trn11 transcriptions, for
which it was assumed that the correct case was already as-
signed.

2.2. System description

The system used in these experiments is quite similar to the
system described in [15]. It makes use of n-gram language
models and acoustic models based on continuous density
HMMs. Each phone is modeled by a tied-state left-to-right
context-dependent triphone HMM, with Gaussian mixture
observation densities. PLP, pitch and MLP features were
used. The PLP feature vector contains 39 components, in-
cluding 12 cepstrum coefficients and log energy with their
first and second derivatives. In the supervised PLP-based sys-
tem, a 3-dimensional pitch feature vector (pitch with first and
second derivatives) is added to the original PLP feature re-
sulting in a vector with 42 components (PLP+F0). The pitch
features were also used in all the MLP-based systems. The
MLP feature vector has 39 components extracted from the
hidden layer of a bottleneck MLP network (see Section 4.2
for details). The phone set contains 35 phones, as well as
special units for silence, breath and hesitation markers.

The vocabulary was automatically selected based on inter-
polation of unigram LMs: 1) one unigram model was trained
for each text source; 2) these LMs were interpolated so as to
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minimize the perplexity on the dev set; 3) a 65k-word vocabu-
lary was selected from the highest probability unigrams. The
out-of-vocabulary rate observed on the dev set was 1.1%.

Component language models were estimated from each
of the different sources using the vocabulary selected and in-
terpolated modified Kneser-Ney smoothing. Therefore, 2-, 3-
and 4-gram LMs were built by interpolation of these com-
ponent models with weights automatically chosen in order to
minimize the perplexity on the dev set.

A pronunciation dictionary was obtained for the vocab-
ulary via a ruled-based grapheme to phoneme (G2P) con-
verter. This module has a pre-processing step which performs
syllabification and stress syllable marking before doing the
G2P conversion. About 530 rules are used to generate (with
few exceptions) a unique pronunciation for each word. Some
pronunciation variants were manually added for a few fre-
quent words. Alternative pronunciations for acronyms were
automatically generated. Further, pronunciation probabilities
were automatically obtained from the trn11 data.

2.3. Baseline models

The baseline AM used in these experiments is the one pre-
sented in [5]. It was trained on a untranscribed corpus con-
taining 173 hours of speech data and using a lattice-based un-
supervised training procedure after six incremental iterations.
This model uses PLP features and is gender-independent. It
covers about 15k phone contexts with 11.5k tied states and 32
Gaussians per state. Silence is modeled by a single state with
2048 Gaussians. A maximum-likelihood linear transform was
applied to the model.

The baseline LM was built by interpolation of component
LMs trained from all available sources, except the trn11 tran-
scriptions. The 4-gram baseline model gives a perplexity of
142 on the development set.

2.4. Metrics

To compare the supervised and unsupervised training meth-
ods, the “WER Recovery” metric [8] was used. It measures
what fraction of the absolute gain of supervised training is
recovered by the unsupervised training, i.e.:

WERRec =
WERI −WERU

WERI −WERS

where WERI , WERU and WERS are the word error rates
obtained with the initial, the unsupervised and the supervised
systems respectively.

3. UNSUPERVISED LM TRAINING

In this work, unsupervised language modeling was applied
in a straightforward manner. The baseline system was used
to decode the trn11 data. With the automatic transcriptions



Table 1. WER of systems using the baseline, supervised
(‘Sup’) or unsupervised (‘Unsup’) trained LMs. WER Re-
covery is given in the last column. All measures are in (%).

LM AM
WER

WERRecSup. Unsup.
baseline baseline 33.2 -
+ trn11 baseline 32.7 33.1 20.0

obtained, a component LM was estimated. Only the best hy-
pothesis given by the decoder was used, without any filter-
ing or weighting technique having been applied. This model
was interpolated with the 10 component LMs estimated from
the remaining available sources. The highest interpolation
coefficient was associated with the automatic transcriptions
(> 0.2), even if they correspond to less than 0.1% of the total
amount of data. This highlights the importance of transcrip-
tions in language modeling, even if they contain errors. The
perplexity of the interpolated 4-gram LM obtained was 137
on the dev set. For comparison, when the manual transcrip-
tions were used instead of the automatic ones, the component
LM received a coefficient of 0.3 and the perplexity of the in-
terpolated model was reduced to 127.

A first experiment was performed in order to compare the
impact of supervised and unsupervised language model train-
ing. Table 1 summarizes the speech recognition results ob-
tained. In the first row, the baseline WER is given. When
the manual or automatic transcriptions of the trn11 set were
added to the LM, absolute WER reductions of 0.5% and 0.1%
were respectively obtained. The WER Recovery is therefore
only 20.0% for the LM-UT in this case. This result is simi-
lar to that obtained by [9] and indicates that using automatic
transcriptions in language modeling is a challenging task and
needs a more extensive investigation. A possible improve-
ment, for instance, could be take into account the confidence
measures to weight the hypotheses given by the decoder.

4. UNSUPERVISED AM TRAINING

Training acoustic models is a task that requires alignment be-
tween the audio stream and its associated transcriptions. Dur-
ing supervised training, a forced alignment is performed using
the manual transcriptions. In the unsupervised approaches,
an initial system is used to decode a large amount of un-
transcribed data. The acoustic model parameter estimation
is guided by one or many alignment hypotheses given by the
decoder. In these experiments, multiple hypotheses weighted
by their posterior probabilities were used, since this approach
was found to lead to slightly better performances [5]. For
each of the models estimated, only one iteration of unsuper-
vised training was applied. The baseline models described in
Section 2.3 were used in the initial system.

There has been an increasing use of discriminative fea-

tures produced by a MLP network in speech recognition sys-
tems. It has been shown that such features lead to improve-
ments over the state-of-the-art LVCSR systems for different
languages and tasks. In this section, the results of AM-UT
using PLP and MLP features are reported.

4.1. Training with PLP features

Three different PLP-based models were compared in the ex-
periments on unsupervised acoustic training. The first model
was trained only on the trn11 set. A second model (pooled)
was built using the baseline and the trn11 data. The third
model was obtained by adapting the pooled model to the trn11
data. In fact, during preliminary tests, no difference of perfor-
mance was observed when adapting the baseline or the pooled
model. However, this latter was used in these experiments
because of its higher likelihood. All three models have 11.5k
tied states. The model trained on the trn11 data covers about
12k phone contexts, while the other two cover 16k.

Table 2 shows the results obtained for the supervised and
unsupervised systems that use PLP-based acoustic models.
The first row shows the baseline system performance. Using
the baseline language model and the adapted acoustic model
(2nd row), WERs of 28.5% and 31.0% were obtained for the
supervised and unsupervised cases, respectively. The WER
Recovery is therefore 46.8% in this case. This recovery rate is
much higher than what was obtained for the LM-UT (20.0%),
what may explains why the unsupervised techniques have
been more commonly used in acoustic modeling. However,
when both unsupervised techniques were applied together
(last row), the system performance was further improved,
with an absolute WER reduction of 2.3% compared to the
baseline system. The equivalent supervised system led to
an absolute reduction of 5.1%. The three last rows present
the results with systems that use the adapted language model
and the three different acoustic models. The adapted acoustic
model performed better than the other two. In the unsu-
pervised case, it led to an absolute WER reduction of 0.6%
compared to the model trained on the trn11 data and 0.2%
over the pooled model. In the supervised case, the WERs
obtained with the model trained on the trn11 data and the
adapted model were respectively 28.9% and 28.1%.

4.2. Training with MLP features

The MLP features are extracted from a 4-layer bottleneck net-
work [12, 13] and are generated in two steps. In the first step,
the MLP network is trained using as input a raw feature vec-
tor that covers a wide temporal context (100-500 ms). This
work makes use of the TRAP-DCT features [16], which are
obtained from a 19-band Mel scale spectrogram, with 25 LPC
coefficients for each frequency band, resulting in a 475 raw
input vector. A discrete cosine transform (DCT) is applied to
each band. The output layer uses the HMM phone states as
target (109 phone-state targets were defined). In the second



Table 3. WER of systems built using different levels of supervision. The ‘manual’ and ‘auto’ tags indicate if the models were
trained using whether the manual (supervised) or automatic (unsupervised) transcriptions of the trn11 set. WER Recovery is
given in the last column. All measures are in (%). As a reminder, the baseline WER is 33.2%

System MLP HMM LM WER WERRec

supervised manual manual + manual 26.9 -
MLPunsupHMMsup auto manual + manual 27.7 87.3
MLPsupHMMunsup manual auto + manual 29.2 63.5
MLPunsupHMMunsup auto auto + manual 30.0 50.8
unsupervised auto auto + auto 30.5 42.9
unsupervised, pooled auto pooled + auto 30.0 -
unsupervised, adapted auto pooled→ adapted + auto 30.1 -

Table 2. WER of baseline system and systems built using
supervised (‘Sup’) or unsupervised (‘Unsup’) methods with
PLP-based acoustic models. WER Recovery is given in the
last column. All measures are in (%).

LM AM
WER

WERRecSup. Unsup.
baseline baseline 33.2 -
baseline pooled→ adapted 28.5 31.0 46.8

+ trn11 trn11 28.9 31.5 39.5
+ trn11 pooled - 31.1 -
+ trn11 pooled→ adapted 28.1 30.9 45.1

step, the raw features are processed by the MLP and the fea-
tures are not taken from the output layer of the MLP but from
the “bottleneck” hidden layer, whose size is defined accord-
ing to the desired number of features (39 in this work). After-
wards the extracted feature vector is decorrelated by a PCA
transformation. The STT system thus uses a 81-parameter
feature vector resulting from the concatenation of the MLP,
PLP and F0 features (MLP+PLP+F0).

Using MLP features clearly increases the complexity of
acoustic model training, since the parameters of the MLP net-
work have to be estimated in addition to the HMM parame-
ters. On unsupervised training, this new step adds another de-
gree of uncertainty. The impact of using manual or automatic
transcriptions to guide the parameter estimation for each of
the main components of the system was evaluated.

Table 3 summarizes the results obtained. The upper
part of the table shows systems built with different levels
of supervision, where the acoustic models were trained only
on the trn11 data. As a reminder, the baseline WER is
33.2%. The fully supervised system represents the upper-
bound performance level and gives an absolute WER re-
duction of 6.3% compared to the baseline. The system in
which only the MLP network was trained in a unsupervised
manner (MLPunsupHMMsup) leads to an absolute loss of per-
formance of 0.8% in comparison with the supervised system.
However, when only the HMM was unsupervised trained
(MLPsupHMMunsup), this difference of performance increases

to 2.3%. It may suggests that the HMM parameter estima-
tion is more sensitive to the errors present in the automatic
transcriptions used on training. In other words, the parame-
ter estimation of the MLP network seems to be more robust
to the uncertainty of the training data. When the parameter
estimation of both, MLP and HMM, are derived from the au-
tomatic transcriptions (MLPunsupHMMunsup), the absolute loss
of performance is 3.1% compared to the supervised system.
Finally, the fully unsupervised system outperforms the base-
line with an absolute WER reduction of 2.7%, representing a
WER Recovery of 42.9%.

Two other unsupervised systems were tested and are
shown in the lower part of Table 3. In the first one, a pooled
acoustic model trained on the baseline and trn11 data was
used (unsupervised, pooled). In the second, this model was
adapted to the trn11 data (unsupervised, adapted). As ex-
pected, both models outperformed the acoustic model trained
only on the trn11 data, as was observed for PLP models.
However, in the case of the MLP-based models, the pooled
model performed slightly better than the adapted one, with
WERs of 30.0% and 30.1%, respectively.

4.3. Comparing PLP and MLP models

In the last sections, supervised and unsupervised training of
PLP and MLP based models were compared. Table 4 sum-
marizes the results obtained using the adapted language mod-
els and acoustic models trained on the trn11 data. The re-
sults in the same row show that models trained with MLP
features outperforms the models trained only with PLP fea-
tures for both, the supervised and the unsupervised systems.
However, the relative improvement in the unsupervised case
is lower (3.2% against 6.9%). In the same column, the su-
pervised and unsupervised systems are compared. The rel-
ative improvement of the supervised system over the unsu-
pervised one is 8.3% when only PLP features were used and
11.8% when they were combined with MLP features. In the
last row, the WER Recovery rates are shown. The WER Re-
covery obtained with respect to the baseline is 39.5% for the
PLP-based model and 42.9% for the MLP-based model. Al-
though the use of MLP features increases the number of pa-



Table 4. WER of supervised and unsupervised systems built
with the adapted LMs and the AMs trained only on trn11 data
using PLP+F0 or MLP+PLP+F0 features. WER Recovery is
given in the last row. All measures are in (%).

System PLP+F0 MLP+PLP+F0
unsupervised 31.5 30.5
supervised 28.9 26.9

WERRec 39.5 42.9

rameters to be estimated during acoustic training, the unsu-
pervised MLP-based model is able to recover a more impor-
tant fraction of the absolute gain obtained by the equivalent
supervised model, in comparison to the PLP model.

5. CONCLUSIONS

In this paper, unsupervised training in all the components of
a Portuguese broadcast system recognition was investigated.
The unsupervised LM led to a slight gain of performance over
the baseline. This gain was maintained when both, unsuper-
vised acoustic and language modeling were applied. The use
of MLP features in unsupervised acoustic model training was
introduced. It was shown that such discriminative features
help to improve the system performance even when no man-
ual transcriptions are available. They also led to better WER
Recovery rate in comparison to the PLP models.

The experiments presented in this paper were performed
using only 56 hours of speech data in order to compare su-
pervised and unsupervised training approaches. While a fully
supervised system still outperforms the unsupervised one, this
relative difference is on the order of 10%. It is important to
note that new audio data, when available, can be easily added
to the unsupervised training process. So, we expect that this
difference can be reduced applying an incremental unsuper-
vised training method. Additionally, other techniques are be-
ing investigated to improve the unsupervised language model
training in order to take into account the confidence measures
given by the decoder.
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